Suppr超能文献

基于高阶交互和样本分布重平衡的肝纤维化磁共振图像分类

Liver fibrosis MR images classification based on higher-order interaction and sample distribution rebalancing.

作者信息

Zhang Ling, Xiao Zhennan, Jiang Wenchao, Luo Chengbin, Ye Ming, Yue Guanghui, Chen Zhiyuan, Ouyang Shuman, Liu Yupin

机构信息

School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China.

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060 Guangdong China.

出版信息

Health Inf Sci Syst. 2023 Nov 8;11(1):51. doi: 10.1007/s13755-023-00255-6. eCollection 2023 Dec.

Abstract

The fractal features of liver fibrosis MR images exhibit an irregular fragmented distribution, and the diffuse feature distribution lacks interconnectivity, result- ing in incomplete feature learning and poor recognition accuracy. In this paper, we insert recursive gated convolution into the ResNet18 network to introduce spatial information interactions during the feature learning process and extend it to higher orders using recursion. Higher-order spatial information interactions enhance the correlation between features and enable the neural network to focus more on the pixel-level dependencies, enabling a global interpretation of liver MR images. Additionally, the existence of light scattering and quantum noise during the imaging process, coupled with environmental factors such as breathing artifacts caused by long time breath holding, affects the quality of the MR images. To improve the classification performance of the neural network and better cap- ture sample features, we introduce the Adaptive Rebalance loss function and incorporate the feature paradigm as a learnable adaptive attribute into the angular margin auxiliary function. Adaptive Rebalance loss function can expand the inter-class distance and narrow the intra-class difference to further enhance discriminative ability of the model. We conduct extensive experiments on liver fibrosis MR imaging involving 209 patients. The results demonstrate an average improvement of two percent in recognition accuracy compared to ResNet18. The github is at https://github.com/XZN1233/paper.git.

摘要

肝纤维化磁共振图像的分形特征呈现不规则的碎片化分布,且弥散特征分布缺乏连通性,导致特征学习不完整且识别准确率低。在本文中,我们将递归门控卷积插入到ResNet18网络中,以便在特征学习过程中引入空间信息交互,并通过递归将其扩展到更高阶。高阶空间信息交互增强了特征之间的相关性,并使神经网络能够更多地关注像素级依赖性,从而实现对肝脏磁共振图像的全局解释。此外,成像过程中存在光散射和量子噪声,再加上长时间屏气引起的呼吸伪影等环境因素,会影响磁共振图像的质量。为了提高神经网络的分类性能并更好地捕捉样本特征,我们引入了自适应重新平衡损失函数,并将特征范式作为可学习的自适应属性纳入角度边际辅助函数。自适应重新平衡损失函数可以扩大类间距离并缩小类内差异,以进一步增强模型的判别能力。我们对涉及209名患者的肝纤维化磁共振成像进行了广泛的实验。结果表明,与ResNet18相比,识别准确率平均提高了2%。代码库位于https://github.com/XZN1233/paper.git。

相似文献

8
Deep learning for improving ZTE MRI images in free breathing.深度学习在自由呼吸状态下改善中兴 MRI 图像。
Magn Reson Imaging. 2023 May;98:97-104. doi: 10.1016/j.mri.2023.01.019. Epub 2023 Jan 18.

本文引用的文献

2
Medical deep learning-A systematic meta-review.医学深度学习——系统的元综述。
Comput Methods Programs Biomed. 2022 Jun;221:106874. doi: 10.1016/j.cmpb.2022.106874. Epub 2022 May 11.
5
ArcFace: Additive Angular Margin Loss for Deep Face Recognition.ArcFace:用于深度人脸识别的附加角度间隔损失。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):5962-5979. doi: 10.1109/TPAMI.2021.3087709. Epub 2022 Sep 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验