Suppr超能文献

迈向更优人脸识别表现:以数据为中心的方法。

Towards a Better Performance in Facial Expression Recognition: A Data-Centric Approach.

机构信息

Central University of Ecuador, P.O. Box 17-03-100, Quito, Ecuador.

Institute for Computer Research, University of Alicante, P.O. Box 99. 03080, Alicante, Spain.

出版信息

Comput Intell Neurosci. 2023 Nov 3;2023:1394882. doi: 10.1155/2023/1394882. eCollection 2023.

Abstract

Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine, healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching for better algorithms to improve recognition. However, progress is insufficient. Despite being the main resource for automatic learning, few works focus on improving the quality of datasets. We propose a novel data-centric method to tackle misclassification, a problem commonly encountered in facial image datasets. The strategy is to progressively refine the dataset by successive training of a CNN model that is fixed. Each training uses the facial images corresponding to the correct predictions of the previous training, allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model performs automatic reclassification of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or augmenting facial images. Experimental results on three representative datasets proved the effectiveness of the proposed method, improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AffectNet, respectively. The recognition rates on the reclassified versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art performance.

摘要

面部表情是我们情绪的最佳证据。其自动检测和识别是机器人学、医学、医疗保健、教育、心理学、社会学、市场营销、安全、娱乐和许多其他领域的关键。在实验室环境中的实验可实现高性能。然而,在真实场景中,这是具有挑战性的。基于卷积神经网络 (CNN) 的深度学习技术显示出巨大的潜力。大多数研究都是以模型为中心的,致力于寻找更好的算法来提高识别率。然而,进展并不充分。尽管是自动学习的主要资源,但很少有工作专注于提高数据集的质量。我们提出了一种新颖的数据为中心的方法来解决面部图像数据集中常见的分类错误问题。该策略是通过对固定的 CNN 模型进行连续训练来逐步细化数据集。每次训练都使用前一次训练的正确预测所对应的面部图像,从而使模型能够捕获每个面部表情类别更具特色的特征。在最后一次训练后,模型会对整个数据集进行自动重新分类。与其他类似的工作不同,我们的方法避免了修改、删除或扩充面部图像。在三个具有代表性的数据集上的实验结果证明了所提出方法的有效性,分别将 FER2013、NHFI 和 AffectNet 数据集的验证精度提高了 20.45%、14.47%和 39.66%。对这些数据集的重新分类版本的识别率分别为 86.71%、70.44%和 89.17%,达到了最新的性能水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b31/10637848/8c75f5adbc40/CIN2023-1394882.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验