文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach.

作者信息

Sepúlveda-Oviedo Edgar Hernando, Travé-Massuyès Louise, Subias Audine, Pavlov Marko, Alonso Corinne

机构信息

LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.

Feedgy, Paris, France.

出版信息

Heliyon. 2023 Oct 26;9(11):e21491. doi: 10.1016/j.heliyon.2023.e21491. eCollection 2023 Nov.


DOI:10.1016/j.heliyon.2023.e21491
PMID:37954345
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10637999/
Abstract

Conventional fault detection methods in photovoltaic systems face limitations when dealing with emerging monitoring systems that produce vast amounts of high-dimensional data across various domains. Accordingly, great interest appears within the international scientific community for the application of artificial intelligence methods, which are seen as a highly promising solution for effectively managing large datasets for detecting faults. In this review, more than 620 papers published since 2010 on artificial intelligence methods for detecting faults in photovoltaic systems are analyzed. To extract major research trends, in particular to detect most promising algorithms and approaches overcoming excessive time calculations, a conventional bibliographic survey would have been extremely difficult to complete. That is why this study proposes to carry out a review with an innovative approach based on a statistical method named Bibliometric and a Expert qualitative content analysis. This methodology consists of three stages. First, a collection of data from databases is carried out with all precautions to achieve a large, robust, high-quality database. Second, multiple bibliometric indicators are chosen based on the objectives to be achieved and analyzed to assess their real impact, such as the quantity and nature of publications, collaborative connections among organizations, researchers, and countries or most cited articles. Finally, the Expert qualitative content analysis carried out by experts identifies the current and emerging research topics that have the greatest impact on fault detection in photovoltaic systems using artificial intelligence.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/b77fe481a189/gr021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/916e06ab55e2/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c981311ba7be/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/0c8ac123bc27/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/549bdf04633a/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/00cc338055dc/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/373256f5f4de/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/1680eed69751/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/058b2bae623b/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c4ff8a071760/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/6d8e23420554/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/059cd605e0ae/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/8dab3b3d0042/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/75c1d5cd8112/gr013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/57edc951c3b2/gr014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/29fcaf744ec0/gr015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/d07b5238a59a/gr016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c16b0eef9025/gr017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/d54613beddc4/gr018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/08f4d4bd663b/gr019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/f8bc5fcbacd1/gr020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/b77fe481a189/gr021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/916e06ab55e2/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c981311ba7be/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/0c8ac123bc27/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/549bdf04633a/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/00cc338055dc/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/373256f5f4de/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/1680eed69751/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/058b2bae623b/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c4ff8a071760/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/6d8e23420554/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/059cd605e0ae/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/8dab3b3d0042/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/75c1d5cd8112/gr013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/57edc951c3b2/gr014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/29fcaf744ec0/gr015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/d07b5238a59a/gr016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/c16b0eef9025/gr017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/d54613beddc4/gr018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/08f4d4bd663b/gr019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/f8bc5fcbacd1/gr020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/b77fe481a189/gr021.jpg

相似文献

[1]
Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach.

Heliyon. 2023-10-26

[2]
Proposed ANFIS Based Approach for Fault Tracking, Detection, Clearing and Rearrangement for Photovoltaic System.

Sensors (Basel). 2021-3-24

[3]
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review.

Int J Environ Res Public Health. 2022-12-22

[4]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[5]
A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants.

Sensors (Basel). 2020-8-20

[6]
Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.

J Nurs Scholarsh. 2023-7

[7]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[8]
Bibliometric analysis of 100 top cited articles of heart failure-associated diseases in combination with machine learning.

Front Cardiovasc Med. 2023-5-25

[9]
A comprehensive analysis of the emerging modern trends in research on photovoltaic systems and desalination in the era of artificial intelligence and machine learning.

Heliyon. 2024-2-1

[10]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

引用本文的文献

[1]
Analysis and Mapping of Machine Learning in the Context of Diabetes.

Health Sci Rep. 2025-8-13

[2]
A formal statechart model of immediate neonatal adaptation guidelines.

Heliyon. 2025-2-19

[3]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

本文引用的文献

[1]
A Machine-Learning-Based Robust Classification Method for PV Panel Faults.

Sensors (Basel). 2022-11-4

[2]
Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis.

Front Oncol. 2022-8-2

[3]
Strengthening the Bridge Between Academic and the Industry Through the Academia-Industry Collaboration Plan Design Model.

Front Psychol. 2022-6-6

[4]
A probabilistic model for co-occurrence analysis in bibliometrics.

J Biomed Inform. 2022-4

[5]
Food Supply Chain Safety Research Trends From 1997 to 2020: A Bibliometric Analysis.

Front Public Health. 2021

[6]
A systematic bibliometric review of clean energy transition: Implications for low-carbon development.

PLoS One. 2021

[7]
Research hotspots and trends in nursing education from 2014 to 2020: A co-word analysis based on keywords.

J Adv Nurs. 2022-3

[8]
Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis.

Comput Biol Med. 2021-8

[9]
Review of flipped learning in engineering education: Scientific mapping and research horizon.

Educ Inf Technol (Dordr). 2022

[10]
A Systematic Review and Bibliometric Analysis of the Scientific Literature on the Early Phase of COVID-19 in Italy.

Front Public Health. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索