Suppr超能文献

基于文献计量学方法的光伏系统人工智能故障诊断

Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach.

作者信息

Sepúlveda-Oviedo Edgar Hernando, Travé-Massuyès Louise, Subias Audine, Pavlov Marko, Alonso Corinne

机构信息

LAAS-CNRS, Université Fédérale de Toulouse, CNRS, UPS, INSA, Toulouse, France.

Feedgy, Paris, France.

出版信息

Heliyon. 2023 Oct 26;9(11):e21491. doi: 10.1016/j.heliyon.2023.e21491. eCollection 2023 Nov.

Abstract

Conventional fault detection methods in photovoltaic systems face limitations when dealing with emerging monitoring systems that produce vast amounts of high-dimensional data across various domains. Accordingly, great interest appears within the international scientific community for the application of artificial intelligence methods, which are seen as a highly promising solution for effectively managing large datasets for detecting faults. In this review, more than 620 papers published since 2010 on artificial intelligence methods for detecting faults in photovoltaic systems are analyzed. To extract major research trends, in particular to detect most promising algorithms and approaches overcoming excessive time calculations, a conventional bibliographic survey would have been extremely difficult to complete. That is why this study proposes to carry out a review with an innovative approach based on a statistical method named Bibliometric and a Expert qualitative content analysis. This methodology consists of three stages. First, a collection of data from databases is carried out with all precautions to achieve a large, robust, high-quality database. Second, multiple bibliometric indicators are chosen based on the objectives to be achieved and analyzed to assess their real impact, such as the quantity and nature of publications, collaborative connections among organizations, researchers, and countries or most cited articles. Finally, the Expert qualitative content analysis carried out by experts identifies the current and emerging research topics that have the greatest impact on fault detection in photovoltaic systems using artificial intelligence.

摘要

光伏系统中的传统故障检测方法在处理新兴监测系统时面临局限性,这些监测系统会在各个领域产生大量高维数据。因此,国际科学界对人工智能方法的应用表现出极大兴趣,人工智能方法被视为有效管理用于故障检测的大型数据集的极有前景的解决方案。在本综述中,分析了自2010年以来发表的620多篇关于光伏系统故障检测人工智能方法的论文。为了提取主要研究趋势,特别是检测克服过多时间计算的最有前途的算法和方法,传统的文献综述将极难完成。这就是为什么本研究建议采用一种基于名为文献计量学的统计方法和专家定性内容分析的创新方法进行综述。该方法包括三个阶段。首先,采取一切预防措施从数据库收集数据,以建立一个大型、可靠、高质量的数据库。其次,根据要实现的目标选择多个文献计量指标并进行分析,以评估其实际影响,如出版物的数量和性质、组织、研究人员和国家之间的合作关系或被引用最多的文章。最后,由专家进行的专家定性内容分析确定了对使用人工智能的光伏系统故障检测有最大影响的当前和新兴研究主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ef/10637999/916e06ab55e2/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验