绘制医疗人工智能伦理研究脉络:文献计量与内容分析。

Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis.

机构信息

Management Studies Center, Tarbiat Modares University, Tehran, Iran.

Assistant professor, Faculty of Law, Tarbiat Modares University, Tehran, Iran.

出版信息

Comput Biol Med. 2021 Aug;135:104660. doi: 10.1016/j.compbiomed.2021.104660. Epub 2021 Jul 19.

Abstract

The growth of artificial intelligence in promoting healthcare is rapidly progressing. Notwithstanding its promising nature, however, AI in healthcare embodies certain ethical challenges as well. This research aims to delineate the most influential elements of scientific research on AI ethics in healthcare by conducting bibliometric, social network analysis, and cluster-based content analysis of scientific articles. Not only did the bibliometric analysis identify the most influential authors, countries, institutions, sources, and documents, but it also recognized four ethical concerns associated with 12 medical issues. These ethical categories are composed of normative, meta-ethics, epistemological and medical practice. The content analysis complemented this list of ethical categories and distinguished seven more ethical categories: ethics of relationships, medico-legal concerns, ethics of robots, ethics of ambient intelligence, patients' rights, physicians' rights, and ethics of predictive analytics. This analysis likewise identified 40 general research gaps in the literature and plausible future research strands. This analysis furthers conversations on the ethics of AI and associated emerging technologies such as nanotech and biotech in healthcare, hence, advances convergence research on the ethics of AI in healthcare. Practically, this research will provide a map for policymakers and AI engineers and scientists on what dimensions of AI-based medical interventions require stricter policies and guidelines and robust ethical design and development.

摘要

人工智能在促进医疗保健方面的发展迅速。然而,尽管它具有广阔的前景,但医疗保健中的人工智能也存在一些伦理挑战。本研究旨在通过对科学文献进行文献计量学、社会网络分析和基于聚类的内容分析,描绘出人工智能在医疗保健领域的科学研究中最有影响力的元素。文献计量学分析不仅确定了最有影响力的作者、国家、机构、来源和文献,还确定了与 12 个医学问题相关的四个伦理问题。这些伦理类别由规范伦理、元伦理、认识论和医学实践组成。内容分析补充了这些伦理类别,并区分了七个更具体的伦理类别:关系伦理、医疗法律问题、机器人伦理、环境智能伦理、患者权利、医生权利和预测分析伦理。这项分析还确定了文献中 40 个普遍的研究差距和未来可能的研究方向。这项分析进一步探讨了人工智能的伦理问题以及相关的新兴技术,如纳米技术和生物技术在医疗保健中的应用,从而推进了人工智能在医疗保健中的融合研究。实际上,这项研究将为政策制定者和人工智能工程师和科学家提供一张地图,指出基于人工智能的医疗干预措施需要更严格的政策和指导方针以及强大的伦理设计和开发的维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索