Ghamgosar Arezoo, Nemati-Anaraki Leila, Zarghani Maryam, Bazri Hooman, Ahmadian Leila, Galavi Zahra, Norouzi Somaye
Medical Biotechnology Research Center, School of Paramedical Guilan University of Medical Sciences Rasht Iran.
Department of Medical Library and Information Sciences, School of Health Management and Information Sciences Iran University of Medical Sciences Tehran Iran.
Health Sci Rep. 2025 Aug 13;8(8):e71167. doi: 10.1002/hsr2.71167. eCollection 2025 Aug.
BACKGROUND AND AIMS: The application of machine learning (ML) has started to change some important aspects of health care in diabetes. We aimed to utilize a bibliometric approach to analyze and map ML in the context of diabetes. METHODS: To build our data set, we searched from the Web of Science Core Collection (WoSCC) database, and restricted our search from January 1, 2010 to December 31, 2023. For citation analysis, the online services of WoS were used to investigate the information content of the data set, VOSviewer and Microsoft Excel 2013 were employed to construct and visualize the bibliographic data. RESULTS: Overall, 5,222 results that met the criteria were retrieved. The trend of published studies indicates that the number of publications has steadily increased over the past 14 years. The most active country was found to be USA, followed by the China and India. The highest level of cooperation with other countries belonged to the USA. The most prolific author on ML in the context of diabetes was Tien Yin Wong, with twenty-two articles affiliated at Tsinghua University; after that, Pantelis Georgiou with twenty articles affiliated at the Imperial College London, and Pau Herrero, with nineteen articles affiliated at Tijuana Institute of Technology. The most prolific research areas were machine learning, prediction models, diabetic retinopathy, deep learning, and diagnostics. CONCLUSION: The results of this study are a rich scientific source of ML for diabetes to guide researchers. This study can guide policymakers, physicians, and practitioners to help in the decision-making process. In addition, the findings will be useful for governments to guide future budgets for target studies.
背景与目的:机器学习(ML)的应用已开始改变糖尿病医疗保健的一些重要方面。我们旨在利用文献计量学方法分析和描绘糖尿病领域的机器学习情况。 方法:为构建我们的数据集,我们在科学网核心合集(WoSCC)数据库中进行搜索,并将搜索范围限制在2010年1月1日至2023年12月31日。对于引文分析,使用WoS的在线服务来调查数据集的信息内容,采用VOSviewer和Microsoft Excel 2013来构建和可视化文献数据。 结果:总体而言,检索到5222条符合标准的结果。已发表研究的趋势表明,在过去14年中出版物数量稳步增加。发现最活跃的国家是美国,其次是中国和印度。与其他国家合作程度最高的是美国。在糖尿病领域机器学习方面最多产的作者是王忞蔚,有22篇文章隶属于清华大学;其次是潘特利斯·乔治乌,有20篇文章隶属于伦敦帝国理工学院,以及 Pau Herrero,有19篇文章隶属于蒂华纳理工学院。最多产的研究领域是机器学习、预测模型、糖尿病视网膜病变、深度学习和诊断。 结论:本研究结果是糖尿病机器学习的丰富科学资源,可指导研究人员。本研究可指导政策制定者、医生和从业者在决策过程中提供帮助。此外,研究结果将有助于政府指导未来目标研究的预算。
Health Sci Rep. 2025-8-13
Cochrane Database Syst Rev. 2022-5-20
Front Oncol. 2025-6-30
Front Med (Lausanne). 2025-7-1
Cochrane Database Syst Rev. 2015-1-7
Cochrane Database Syst Rev. 2015-6-23
Healthcare (Basel). 2023-4-15
Comput Methods Programs Biomed. 2023-4
Front Endocrinol (Lausanne). 2022
Front Biosci (Landmark Ed). 2022-8-31
Scientometrics. 2022