文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

糖尿病背景下机器学习的分析与映射

Analysis and Mapping of Machine Learning in the Context of Diabetes.

作者信息

Ghamgosar Arezoo, Nemati-Anaraki Leila, Zarghani Maryam, Bazri Hooman, Ahmadian Leila, Galavi Zahra, Norouzi Somaye

机构信息

Medical Biotechnology Research Center, School of Paramedical Guilan University of Medical Sciences Rasht Iran.

Department of Medical Library and Information Sciences, School of Health Management and Information Sciences Iran University of Medical Sciences Tehran Iran.

出版信息

Health Sci Rep. 2025 Aug 13;8(8):e71167. doi: 10.1002/hsr2.71167. eCollection 2025 Aug.


DOI:10.1002/hsr2.71167
PMID:40809698
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12344509/
Abstract

BACKGROUND AND AIMS: The application of machine learning (ML) has started to change some important aspects of health care in diabetes. We aimed to utilize a bibliometric approach to analyze and map ML in the context of diabetes. METHODS: To build our data set, we searched from the Web of Science Core Collection (WoSCC) database, and restricted our search from January 1, 2010 to December 31, 2023. For citation analysis, the online services of WoS were used to investigate the information content of the data set, VOSviewer and Microsoft Excel 2013 were employed to construct and visualize the bibliographic data. RESULTS: Overall, 5,222 results that met the criteria were retrieved. The trend of published studies indicates that the number of publications has steadily increased over the past 14 years. The most active country was found to be USA, followed by the China and India. The highest level of cooperation with other countries belonged to the USA. The most prolific author on ML in the context of diabetes was Tien Yin Wong, with twenty-two articles affiliated at Tsinghua University; after that, Pantelis Georgiou with twenty articles affiliated at the Imperial College London, and Pau Herrero, with nineteen articles affiliated at Tijuana Institute of Technology. The most prolific research areas were machine learning, prediction models, diabetic retinopathy, deep learning, and diagnostics. CONCLUSION: The results of this study are a rich scientific source of ML for diabetes to guide researchers. This study can guide policymakers, physicians, and practitioners to help in the decision-making process. In addition, the findings will be useful for governments to guide future budgets for target studies.

摘要

背景与目的:机器学习(ML)的应用已开始改变糖尿病医疗保健的一些重要方面。我们旨在利用文献计量学方法分析和描绘糖尿病领域的机器学习情况。 方法:为构建我们的数据集,我们在科学网核心合集(WoSCC)数据库中进行搜索,并将搜索范围限制在2010年1月1日至2023年12月31日。对于引文分析,使用WoS的在线服务来调查数据集的信息内容,采用VOSviewer和Microsoft Excel 2013来构建和可视化文献数据。 结果:总体而言,检索到5222条符合标准的结果。已发表研究的趋势表明,在过去14年中出版物数量稳步增加。发现最活跃的国家是美国,其次是中国和印度。与其他国家合作程度最高的是美国。在糖尿病领域机器学习方面最多产的作者是王忞蔚,有22篇文章隶属于清华大学;其次是潘特利斯·乔治乌,有20篇文章隶属于伦敦帝国理工学院,以及 Pau Herrero,有19篇文章隶属于蒂华纳理工学院。最多产的研究领域是机器学习、预测模型、糖尿病视网膜病变、深度学习和诊断。 结论:本研究结果是糖尿病机器学习的丰富科学资源,可指导研究人员。本研究可指导政策制定者、医生和从业者在决策过程中提供帮助。此外,研究结果将有助于政府指导未来目标研究的预算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/e0684eb00ca1/HSR2-8-e71167-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/2d5c46d66fb9/HSR2-8-e71167-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/0532af1f2b25/HSR2-8-e71167-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/8e5d58ca4634/HSR2-8-e71167-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/e0684eb00ca1/HSR2-8-e71167-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/2d5c46d66fb9/HSR2-8-e71167-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/0532af1f2b25/HSR2-8-e71167-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/8e5d58ca4634/HSR2-8-e71167-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808b/12344509/e0684eb00ca1/HSR2-8-e71167-g001.jpg

相似文献

[1]
Analysis and Mapping of Machine Learning in the Context of Diabetes.

Health Sci Rep. 2025-8-13

[2]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[5]
Knowledge graph and bibliometric analysis of inflammatory indicators in ovarian cancer.

Front Oncol. 2025-6-30

[6]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[7]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2015-1-7

[8]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[9]
Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia.

Cochrane Database Syst Rev. 2015-6-23

[10]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

本文引用的文献

[1]
Analysis and mapping of harm reduction research in the context of injectable drug use: identifying research hotspots, gaps and future directions.

Harm Reduct J. 2024-7-10

[2]
Analysis and mapping of global research publications on point-of-care testing for infectious diseases.

J Eval Clin Pract. 2024-9

[3]
Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach.

Heliyon. 2023-10-26

[4]
Using Machine Learning for the Risk Factors Classification of Glycemic Control in Type 2 Diabetes Mellitus.

Healthcare (Basel). 2023-4-15

[5]
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.

Comput Methods Programs Biomed. 2023-4

[6]
Overview of global publications on machine learning in diabetic retinopathy from 2011 to 2021: Bibliometric analysis.

Front Endocrinol (Lausanne). 2022

[7]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[8]
Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis.

Front Pharmacol. 2022-6-8

[9]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[10]
Internationalizing AI: evolution and impact of distance factors.

Scientometrics. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索