Suppr超能文献

复杂胸腹主动脉瘤腔内分支型覆膜支架术后非出院预测因素。

Preoperative predictors of nonhome discharge after fenestrated-branched endovascular repair of complex abdominal and thoracoabdominal aortic aneurysms.

机构信息

Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN.

Department of Cardiovascular and Vascular Surgery, The University of Texas Health Science Center at Houston, Houston, TX.

出版信息

J Vasc Surg. 2024 Mar;79(3):469-477.e3. doi: 10.1016/j.jvs.2023.11.015. Epub 2023 Nov 11.

Abstract

BACKGROUND

Nonhome discharge (NHD) has significant implications for patient counseling and discharge planning and is frequently required following fenestrated-branched endovascular aortic repair (FB-EVAR) of complex abdominal aortic aneurysms (CAAA) and thoracoabdominal aortic aneurysms (TAAA). We aimed to identify preoperative predictors of NHD after elective FB-EVAR for CAAA and TAAA and develop a risk calculator able to predict NHD.

METHODS

A retrospective review of prospectively collected data on all patients undergoing FB-EVAR between January 2007 and December 2021 at a single institution was performed. Exclusion criteria were admission from a nonhome setting, emergency and repeat FB-EVAR, and discharge to an unknown destination. The cohort was randomly split into separate development (70% of patients) and validation (30%) cohorts to develop a predictive calculator for NHD. Independent variables associated with NHD were assessed in a series of logistic regression analyses from 100 bootstrapped samples of the development set, and a model was developed using the most predictive variables. Resulting parameter estimates were applied to data in the validation set to assess model discrimination and calibration.

RESULTS

From the initial cohort of 712 FB-EVAR patients, 644 were included in the study (74% male; mean age, 75.4 ± 7.6 years), including 452 with CAAA (70%) and 192 with TAAA (30%). Early mortality occurred in eight patients (1.2%; 5 in CAAA and 3 in TAAA) and the median hospital stay was 5 days (4 for CAAA and 7 for TAAA). Ninety-seven patients (15%) had a NHD. On multivariable analysis, older age (per year, odds ratio [OR], 1.08; P < .001), female gender (OR, 3.03; P < .001), smoking (OR, 2.86; P = .01), congestive heart failure (OR, 3.05; P = .004), peripheral artery disease (OR, 1.81; P = .07), and extent I (OR, 3.17), II (OR, 2.84), and III (OR, 2.52; all P = .08) TAAAs were associated with an increased likelihood of NHD in the development set. Based on these factors, the risk calculator was developed which accurately predicts NHD in the validation set with an area under the curve of 0.7.

CONCLUSIONS

Older, female smokers with congestive heart failure and peripheral artery disease and more extensive aneurysms are at highest risk of NHD after FB-EVAR. Using only preoperative factors, our risk calculator can predict accurately who will have a NHD, allowing enhanced preoperative patient counselling and accelerated hospital discharge.

摘要

背景

非家庭出院(NHD)对患者咨询和出院计划有重大影响,并且在复杂腹主动脉瘤(CAAA)和胸腹主动脉瘤(TAAA)的分支型腔内血管修复(FB-EVAR)后经常需要进行。我们旨在确定择期 FB-EVAR 治疗 CAAA 和 TAAA 后 NHD 的术前预测因素,并开发能够预测 NHD 的风险计算器。

方法

对 2007 年 1 月至 2021 年 12 月在单一机构接受 FB-EVAR 的所有患者的前瞻性收集数据进行回顾性审查。排除标准为从非家庭环境入院、急诊和重复 FB-EVAR 以及出院至未知目的地。该队列被随机分为单独的开发(70%的患者)和验证(30%的患者)队列,以开发用于预测 NHD 的计算器。从开发集的 100 个自举样本中进行一系列逻辑回归分析,评估与 NHD 相关的独立变量,并使用最具预测性的变量开发模型。将得到的参数估计应用于验证集中的数据,以评估模型的区分度和校准度。

结果

在最初的 712 例 FB-EVAR 患者中,644 例被纳入研究(74%为男性;平均年龄 75.4±7.6 岁),其中 452 例为 CAAA(70%)和 192 例为 TAAA(30%)。8 例患者发生早期死亡(1.2%;5 例为 CAAA,3 例为 TAAA),中位住院时间为 5 天(CAAA 为 4 天,TAAA 为 7 天)。97 例(15%)发生 NHD。多变量分析显示,年龄每增加 1 岁(比值比[OR],1.08;P<0.001)、女性(OR,3.03;P<0.001)、吸烟(OR,2.86;P=0.01)、充血性心力衰竭(OR,3.05;P=0.004)、外周动脉疾病(OR,1.81;P=0.07)和 I 型(OR,3.17)、II 型(OR,2.84)和 III 型(OR,2.52;均 P=0.08)TAAA 与开发集中 NHD 的可能性增加相关。基于这些因素,开发了风险计算器,可以在验证集中准确预测 NHD,曲线下面积为 0.7。

结论

FB-EVAR 后,年龄较大、女性、吸烟者合并充血性心力衰竭和外周动脉疾病以及动脉瘤范围较广的患者发生 NHD 的风险最高。使用仅术前因素,我们的风险计算器可以准确预测谁将发生 NHD,从而加强术前患者咨询并加速出院。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验