Genetic Toxicology Laboratory, University of Vermont, Burlington, Vermont, USA.
EnviroLogix, Portland, Maine, USA.
Environ Mol Mutagen. 2023 Oct-Nov;64(8-9):432-457. doi: 10.1002/em.22579. Epub 2023 Nov 30.
Mutations in T lymphocytes (T-cells) are informative quantitative markers for environmental mutagen exposures, but risk extrapolations from rodent models to humans also require an understanding of how T-cell development and proliferation kinetics impact mutagenic outcomes. Rodent studies have shown that patterns in chemical-induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene of T-cells differ between lymphoid organs. The current work was performed to obtain knowledge of the relationships between maturation events during T-cell development and changes in chemical-induced mutant frequencies over time in differing immune compartments of a mouse model. A novel reverse transcriptase-polymerase chain reaction based method was developed to determine the specific T-cell receptor beta (Tcrb) gene mRNA expressed in mouse T-cell isolates, enabling sequence analysis of the PCR product that then identifies the specific hypervariable CDR3 junctional region of the expressed Tcrb gene for individual isolates. Characterization of spontaneous Hprt mutant isolates from the thymus, spleen, and lymph nodes of control mice for their Tcrb gene expression found evidence of in vivo clonal amplifications of Hprt mutants and their trafficking between tissues in the same animal. Concurrent analyses of Hprt mutations and Tcrb gene rearrangements in different lymphoid tissues of control versus N-ethyl-N-nitrosourea-exposed mice permitted elucidation of the localization and timing of mutational events in T-cells, establishing that mutagenesis occurs primarily in the pre-rearrangement replicative period in pre-thymic/thymic populations. These findings demonstrate that chemical-induced mutagenic burden is determined by the combination of mutagenesis and T-cell clonal expansion, processes with roles in immune function and in the pathogenesis of autoimmune disease and cancer.
T 淋巴细胞(T 细胞)中的突变是环境诱变剂暴露的有意义的定量标志物,但要将啮齿动物模型中的风险推断扩展到人类,还需要了解 T 细胞发育和增殖动力学如何影响诱变结果。啮齿动物研究表明,T 细胞中次黄嘌呤鸟嘌呤磷酸核糖转移酶(Hprt)基因中化学诱导突变的模式在淋巴器官之间存在差异。目前的工作旨在获得关于 T 细胞发育过程中的成熟事件与在不同免疫区室中的小鼠模型中随时间变化的化学诱导突变频率之间的关系的知识。开发了一种新的逆转录-聚合酶链反应(RT-PCR)方法来确定在小鼠 T 细胞分离物中表达的特定 T 细胞受体β(Tcrb)基因 mRNA,从而能够对 PCR 产物进行序列分析,然后确定表达的 Tcrb 基因的特定高变区 CDR3 连接区对于单个分离物。对来自对照小鼠的胸腺、脾脏和淋巴结中的自发 Hprt 突变分离物的 Tcrb 基因表达进行了特征描述,发现了 Hprt 突变体在体内克隆扩增的证据,以及它们在同一动物组织之间的运输。对对照和 N-乙基-N-亚硝脲暴露的小鼠的不同淋巴组织中的 Hprt 突变和 Tcrb 基因重排进行同步分析,阐明了 T 细胞中突变事件的定位和时间,证实了诱变主要发生在胸腺前/胸腺前群体的预重排复制期。这些发现表明,化学诱导的诱变负担取决于诱变和 T 细胞克隆扩增的组合,这些过程在免疫功能以及自身免疫性疾病和癌症的发病机制中具有作用。