Suppr超能文献

皮肤科医生的CADFU:一种采用DHuNeT(双相超活跃U-Net)和YOLOv8算法的新型慢性伤口与溃疡诊断系统。

CADFU for Dermatologists: A Novel Chronic Wounds & Ulcers Diagnosis System with DHuNeT (Dual-Phase Hyperactive UNet) and YOLOv8 Algorithm.

作者信息

Shah Syed Muhammad Ahmed Hassan, Rizwan Atif, Atteia Ghada, Alabdulhafith Maali

机构信息

Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan.

Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea.

出版信息

Healthcare (Basel). 2023 Oct 27;11(21):2840. doi: 10.3390/healthcare11212840.

Abstract

In recent times, there has been considerable focus on harnessing artificial intelligence (AI) for medical image analysis and healthcare purposes. In this study, we introduce CADFU (Computer-Aided Diagnosis System for Foot Ulcers), a pioneering diabetic foot ulcer diagnosis system. The primary objective of CADFU is to detect and segment ulcers and similar chronic wounds in medical images. To achieve this, we employ two distinct algorithms. Firstly, DHuNeT, an innovative Dual-Phase Hyperactive UNet, is utilized for the segmentation task. Second, we used YOLOv8 for the task of detecting wounds. The DHuNeT autoencoder, employed for the wound segmentation task, is the paper's primary and most significant contribution. DHuNeT is the combination of sequentially stacking two UNet autoencoders. The hyperactive information transmission from the first UNet to the second UNet is the key idea of DHuNeT. The first UNet feeds the second UNet the features it has learned, and the two UNets combine their learned features to create new, more accurate, and effective features. We achieve good performance measures, especially in terms of the Dice co-efficient and precision, with segmentation scores of 85% and 92.6%, respectively. We obtain a mean average precision (mAP) of 86% in the detection task. Future hospitals could quickly monitor patients' health using the proposed CADFU system, which would be beneficial for both patients and doctors.

摘要

近年来,人们相当关注利用人工智能(AI)进行医学图像分析和医疗保健。在本研究中,我们介绍了CADFU(足部溃疡计算机辅助诊断系统),这是一个开创性的糖尿病足溃疡诊断系统。CADFU的主要目标是在医学图像中检测和分割溃疡及类似的慢性伤口。为实现这一目标,我们采用了两种不同的算法。首先,DHuNeT,一种创新的双阶段超活跃UNet,用于分割任务。其次,我们使用YOLOv8进行伤口检测任务。用于伤口分割任务的DHuNeT自动编码器是本文的主要且最重要的贡献。DHuNeT是依次堆叠两个UNet自动编码器的组合。从第一个UNet到第二个UNet的超活跃信息传输是DHuNeT的关键思想。第一个UNet将其学到的特征输入给第二个UNet,两个UNet将它们学到的特征结合起来,以创建新的、更准确和有效的特征。我们取得了良好的性能指标,特别是在Dice系数和精度方面,分割得分分别为85%和92.6%。在检测任务中,我们获得了86%的平均精度均值(mAP)。未来的医院可以使用所提出的CADFU系统快速监测患者的健康状况

,这对患者和医生都将是有益的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/10650200/434ec43e5970/healthcare-11-02840-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验