Huang Aiyue, Jiang Li, Zhang Jiangshan, Wang Qing
School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, China.
Quant Imaging Med Surg. 2022 Jun;12(6):3138-3150. doi: 10.21037/qims-21-1074.
Ultrasonography-an imaging technique that can show the anatomical section of nerves and surrounding tissues-is one of the most effective imaging methods to diagnose nerve diseases. However, segmenting the median nerve in two-dimensional (2D) ultrasound images is challenging due to the tiny and inconspicuous size of the nerve, the low contrast of images, and imaging noise. This study aimed to apply deep learning approaches to improve the accuracy of automatic segmentation of the median nerve in ultrasound images.
In this study, we proposed an improved network called VGG16-UNet, which incorporates a contracting path and an expanding path. The contracting path is the VGG16 model with the 3 fully connected layers removed. The architecture of the expanding path resembles the upsampling path of U-Net. Moreover, attention mechanisms or/and residual modules were added to the U-Net and VGG16-UNet, which sequentially obtained Attention-UNet (A-UNet), Summation-UNet (S-UNet), Attention-Summation-UNet (AS-UNet), Attention-VGG16-UNet (A-VGG16-UNet), Summation-VGG16-UNet (S-VGG16-UNet), and Attention-Summation-VGG16-UNet (AS-VGG16-UNet). Each model was trained on the dataset of 910 median nerve images from 19 participants and tested on 207 frames from a new image sequence. The performance of the models was evaluated by metrics including Dice similarity coefficient (Dice), Jaccard similarity coefficient (Jaccard), Precision, and Recall. Based on the best segmentation results, we reconstructed a 3D median nerve image using the volume rendering method in the Visualization Toolkit (VTK) to assist in clinical nerve diagnosis.
The results of paired -tests showed significant differences (P<0.01) in the metrics' values of different models. It showed that AS-UNet ranked first in U-Net models. The VGG16-UNet and its variants performed better than the corresponding U-Net models. Furthermore, the model's performance with the attention mechanism was superior to that with the residual module either based on U-Net or VGG16-UNet. The A-VGG16-UNet achieved the best performance (Dice =0.904±0.035, Jaccard =0.826±0.057, Precision =0.905±0.061, and Recall =0.909±0.061). Finally, we applied the trained A-VGG16-UNet to segment the median nerve in the image sequence, then reconstructed and visualized the 3D image of the median nerve.
This study demonstrates that the attention mechanism and residual module improve deep learning models for segmenting ultrasound images. The proposed VGG16-UNet-based models performed better than U-Net-based models. With segmentation, a 3D median nerve image can be reconstructed and can provide a visual reference for nerve diagnosis.
超声检查——一种能够显示神经及其周围组织解剖断面的成像技术——是诊断神经疾病最有效的成像方法之一。然而,在二维(2D)超声图像中分割正中神经具有挑战性,这是因为神经尺寸微小且不明显、图像对比度低以及存在成像噪声。本研究旨在应用深度学习方法提高超声图像中正中神经自动分割的准确性。
在本研究中,我们提出了一种改进的网络,称为VGG16-UNet,它包含一个收缩路径和一个扩展路径。收缩路径是去掉了3个全连接层的VGG16模型。扩展路径的架构类似于U-Net的上采样路径。此外,将注意力机制或/和残差模块添加到U-Net和VGG16-UNet中,依次得到注意力-UNet(A-UNet)、求和-UNet(S-UNet)、注意力-求和-UNet(AS-UNet)、注意力-VGG16-UNet(A-VGG16-UNet)、求和-VGG16-UNet(S-VGG16-UNet)以及注意力-求和-VGG16-UNet(AS-VGG16-UNet)。每个模型在来自19名参与者的910张正中神经图像数据集上进行训练,并在来自新图像序列的207帧上进行测试。通过包括骰子相似系数(Dice)、杰卡德相似系数(Jaccard)、精确率和召回率在内的指标评估模型的性能。基于最佳分割结果,我们使用可视化工具包(VTK)中的体绘制方法重建了三维正中神经图像,以辅助临床神经诊断。
配对检验结果显示不同模型指标值存在显著差异(P<0.01)。结果表明,AS-UNet在U-Net模型中排名第一。VGG16-UNet及其变体的表现优于相应的U-Net模型。此外,基于U-Net或VGG16-UNet,具有注意力机制的模型性能优于具有残差模块的模型。A-VGG16-UNet取得了最佳性能(Dice =0.904±0.035,Jaccard =0.826±0.057,精确率 =0.905±0.061,召回率 =0.909±0.061)。最后,我们将训练好的A-VGG16-UNet应用于图像序列中正中神经的分割,然后重建并可视化正中神经的三维图像。
本研究表明,注意力机制和残差模块改进了用于分割超声图像的深度学习模型。所提出的基于VGG16-UNet的模型比基于U-Net的模型表现更好。通过分割,可以重建三维正中神经图像,并可为神经诊断提供视觉参考。