Suppr超能文献

基于数字孪生的热轧带钢生产终轧温度故障诊断平台

Digital Twin-Based Fault Diagnosis Platform for Final Rolling Temperature in Hot Strip Production.

作者信息

Desheng Chen, Jian Shao, Mingxin Li, Sensen Xiang

机构信息

National Engineering Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Materials (Basel). 2023 Nov 3;16(21):7021. doi: 10.3390/ma16217021.

Abstract

The final rolling temperature in hot rolling is an important process parameter for hot-rolled strips and greatly influences their mechanical properties and rolling stability. The diagnosis of final rolling temperature anomalies in hot rolling has always been difficult in industry. A data-driven risk assessment method for detecting final rolling temperature anomalies is proposed. In view of the abnormal setting value for the strip head, a random forest model is established to screen the process parameters with high feature importance, and the isolation forest algorithm is used to evaluate the risk associated with the remaining parameters. In view of the abnormal process curve of the full length of the strip, the Hausdorff distance algorithm is used to eliminate samples with large deviations, and a risk assessment of the curve is carried out using the algorithm. Aiming to understand the complex coupling relationship between the influencing factors, a method for identifying the causes of anomalies, combining a knowledge graph and a Bayesian network, is established. According to the results of the strip head and the full-length risk assessment model, the occurrence of the corresponding nodes in the Bayesian network is determined, and the root cause of the abnormality is finally output. By combining mechanistic modeling and data modeling techniques, it becomes possible to rapidly, automatically, and accurately detect and analyze final rolling temperature anomalies during the rolling process. When applying the system in the field, when compared to manual analysis by onsite personnel, the accuracy of deducing the causes of anomalies was found to reach 92%.

摘要

热轧终轧温度是热轧带钢的一个重要工艺参数,对其力学性能和轧制稳定性有很大影响。在工业中,热轧终轧温度异常的诊断一直很困难。提出了一种基于数据驱动的终轧温度异常检测风险评估方法。针对带钢头部设定值异常,建立随机森林模型筛选特征重要性高的工艺参数,并用孤立森林算法评估其余参数的风险。针对带钢全长工艺曲线异常,采用豪斯多夫距离算法剔除偏差大的样本,并用该算法对曲线进行风险评估。为了解影响因素之间复杂的耦合关系,建立了一种结合知识图谱和贝叶斯网络的异常原因识别方法。根据带钢头部和全长风险评估模型的结果,确定贝叶斯网络中相应节点的发生情况,最终输出异常的根本原因。通过结合机理建模和数据建模技术,可以在轧制过程中快速、自动、准确地检测和分析终轧温度异常。在现场应用该系统时,与现场人员的人工分析相比,发现异常原因推断的准确率达到了92%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef8/10648113/bf2d48dcaa40/materials-16-07021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验