Suppr超能文献

基于数字孪生数据和改进型 ConvNext 的滚动轴承故障诊断研究。

Research on Rolling Bearing Fault Diagnosis Based on Digital Twin Data and Improved ConvNext.

机构信息

College of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.

Inner Mongolia Key Laboratory for Intelligent Diagnosis and Control of Electromechanical Systems, Baotou 014010, China.

出版信息

Sensors (Basel). 2023 Jun 5;23(11):5334. doi: 10.3390/s23115334.

Abstract

This article introduces a novel framework for diagnosing faults in rolling bearings. The framework combines digital twin data, transfer learning theory, and an enhanced ConvNext deep learning network model. Its purpose is to address the challenges posed by the limited actual fault data density and inadequate result accuracy in existing research on the detection of rolling bearing faults in rotating mechanical equipment. To begin with, the operational rolling bearing is represented in the digital realm through the utilization of a digital twin model. The simulation data produced by this twin model replace traditional experimental data, effectively creating a substantial volume of well-balanced simulated datasets. Next, improvements are made to the ConvNext network by incorporating an unparameterized attention module called the Similarity Attention Module (SimAM) and an efficient channel attention feature referred to as the Efficient Channel Attention Network (ECA). These enhancements serve to augment the network's capability for extracting features. Subsequently, the enhanced network model is trained using the source domain dataset. Simultaneously, the trained model is transferred to the target domain bearing using transfer learning techniques. This transfer learning process enables the accurate fault diagnosis of the main bearing to be achieved. Finally, the proposed method's feasibility is validated, and a comparative analysis is conducted in comparison with similar approaches. The comparative study demonstrates that the proposed method effectively addresses the issue of low mechanical equipment fault data density, leading to improved accuracy in fault detection and classification, along with a certain level of robustness.

摘要

本文提出了一种用于诊断滚动轴承故障的新框架。该框架结合了数字孪生数据、迁移学习理论和增强型 ConvNext 深度学习网络模型。其目的是解决现有旋转机械设备滚动轴承故障检测研究中存在的实际故障数据密度有限和结果准确性不足的挑战。首先,通过使用数字孪生模型在数字领域表示运行中的滚动轴承。该孪生模型生成的仿真数据替代了传统的实验数据,有效地创建了大量均衡的仿真数据集。接下来,通过引入无参数化注意力模块 Similarity Attention Module(SimAM)和高效通道注意力特征 Efficient Channel Attention Network(ECA)对 ConvNext 网络进行改进,以增强网络提取特征的能力。然后,使用源域数据集对增强后的网络模型进行训练。同时,使用迁移学习技术将训练好的模型转移到目标域轴承上。这种迁移学习过程实现了主轴承的准确故障诊断。最后,验证了所提出方法的可行性,并与类似方法进行了对比分析。对比研究表明,所提出的方法有效地解决了机械装备故障数据密度低的问题,提高了故障检测和分类的准确性,同时具有一定的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb9d/10256063/3e29c34c7cca/sensors-23-05334-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验