Barandiaran Alejandro, Montanes Nestor, Sanchez-Nacher Lourdes, Balart Rafael, Selles Miguel Angel, Moreno Virginia
Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
Polymers (Basel). 2023 Oct 30;15(21):4265. doi: 10.3390/polym15214265.
This study investigates the viability of cinnamic acid derivatives as alternative plasticizers for polyvinyl chloride (PVC) films by addressing concerns about conventional phthalate-based options that pose health and environmental risks. By theoretical modeling, this research evaluates the compatibility between various cinnamic acid-based plasticizers and the PVC matrix, which suggests their potential effectiveness. Additionally, the incorporation of these plasticizers notably enhances the tensile properties of PVC films, particularly in terms of ductility and elongation at break by surpassing the neat PVC. Moreover, cinnamic acid-based plasticizers induce a drop in the glass transition temperature and storage modulus by, thereby, enhancing flexibility and reducing brittleness in the material. Although a slight reduction in the onset degradation temperature is observed, it does not impede the industrial processing of PVC plastisols at temperatures up to 190 °C. Optically, plasticized films exhibit high transparency with minimal UV and visible light absorption, which renders them suitable for applications necessitating clarity. The water vapor transmission rate analysis indicates increased permeability, influenced by molecular volumes. Atomic force microscopy reveals a compacted, homogeneous surface structure in most plasticized films, which signifies improved film quality. Thus, utilizing cinnamic acid derivatives as PVC plasticizers offers substantial mechanical and structural benefits, while compatibility ensures effective integration by contributing to environmentally sustainable PVC formulations with enhanced performance.
本研究通过解决传统邻苯二甲酸酯类增塑剂带来的健康和环境风险问题,探讨了肉桂酸衍生物作为聚氯乙烯(PVC)薄膜替代增塑剂的可行性。通过理论建模,本研究评估了各种肉桂酸基增塑剂与PVC基体之间的相容性,这表明了它们的潜在有效性。此外,这些增塑剂的加入显著提高了PVC薄膜的拉伸性能,特别是在延展性和断裂伸长率方面超过了纯PVC。此外,肉桂酸基增塑剂会导致玻璃化转变温度和储能模量下降,从而提高材料的柔韧性并降低脆性。尽管观察到起始降解温度略有降低,但这并不妨碍在高达190°C的温度下对PVC增塑溶胶进行工业加工。在光学方面,增塑薄膜具有高透明度,对紫外线和可见光的吸收最小,这使其适用于需要透明度的应用。水蒸气透过率分析表明,渗透率增加,这受分子体积的影响。原子力显微镜显示,大多数增塑薄膜具有致密、均匀的表面结构,这表明薄膜质量有所提高。因此, 使用肉桂酸衍生物作为PVC增塑剂具有显著的机械和结构优势,同时相容性通过有助于提高性能的环境可持续PVC配方确保了有效整合。