Lee Gyu Rie, Pellock Samuel J, Norn Christoffer, Tischer Doug, Dauparas Justas, Anischenko Ivan, Mercer Jaron A M, Kang Alex, Bera Asim, Nguyen Hannah, Goreshnik Inna, Vafeados Dionne, Roullier Nicole, Han Hannah L, Coventry Brian, Haddox Hugh K, Liu David R, Yeh Andy Hsien-Wei, Baker David
bioRxiv. 2023 Nov 2:2023.11.01.565201. doi: 10.1101/2023.11.01.565201.
Despite transformative advances in protein design with deep learning, the design of small-molecule-binding proteins and sensors for arbitrary ligands remains a grand challenge. Here we combine deep learning and physics-based methods to generate a family of proteins with diverse and designable pocket geometries, which we employ to computationally design binders for six chemically and structurally distinct small-molecule targets. Biophysical characterization of the designed binders revealed nanomolar to low micromolar binding affinities and atomic-level design accuracy. The bound ligands are exposed at one edge of the binding pocket, enabling the design of chemically induced dimerization (CID) systems; we take advantage of this to create a biosensor with nanomolar sensitivity for cortisol. Our approach provides a general method to design proteins that bind and sense small molecules for a wide range of analytical, environmental, and biomedical applications.
尽管深度学习在蛋白质设计方面取得了变革性进展,但针对任意配体设计小分子结合蛋白和传感器仍然是一项巨大挑战。在此,我们将深度学习与基于物理的方法相结合,生成了一系列具有多样且可设计口袋几何形状的蛋白质,我们利用这些蛋白质通过计算设计针对六个化学和结构不同的小分子靶标的结合剂。对所设计结合剂的生物物理表征揭示了纳摩尔至低微摩尔的结合亲和力以及原子水平的设计精度。结合的配体暴露在结合口袋的一侧边缘,这使得能够设计化学诱导二聚化(CID)系统;我们利用这一点创建了一种对皮质醇具有纳摩尔灵敏度的生物传感器。我们的方法提供了一种通用方法,可设计用于广泛分析、环境和生物医学应用中结合和传感小分子的蛋白质。