Suppr超能文献

利用设计的蛋白质家族进行小分子结合与传感

Small-molecule binding and sensing with a designed protein family.

作者信息

Lee Gyu Rie, Pellock Samuel J, Norn Christoffer, Tischer Doug, Dauparas Justas, Anischenko Ivan, Mercer Jaron A M, Kang Alex, Bera Asim, Nguyen Hannah, Goreshnik Inna, Vafeados Dionne, Roullier Nicole, Han Hannah L, Coventry Brian, Haddox Hugh K, Liu David R, Yeh Andy Hsien-Wei, Baker David

出版信息

bioRxiv. 2023 Nov 2:2023.11.01.565201. doi: 10.1101/2023.11.01.565201.

Abstract

Despite transformative advances in protein design with deep learning, the design of small-molecule-binding proteins and sensors for arbitrary ligands remains a grand challenge. Here we combine deep learning and physics-based methods to generate a family of proteins with diverse and designable pocket geometries, which we employ to computationally design binders for six chemically and structurally distinct small-molecule targets. Biophysical characterization of the designed binders revealed nanomolar to low micromolar binding affinities and atomic-level design accuracy. The bound ligands are exposed at one edge of the binding pocket, enabling the design of chemically induced dimerization (CID) systems; we take advantage of this to create a biosensor with nanomolar sensitivity for cortisol. Our approach provides a general method to design proteins that bind and sense small molecules for a wide range of analytical, environmental, and biomedical applications.

摘要

尽管深度学习在蛋白质设计方面取得了变革性进展,但针对任意配体设计小分子结合蛋白和传感器仍然是一项巨大挑战。在此,我们将深度学习与基于物理的方法相结合,生成了一系列具有多样且可设计口袋几何形状的蛋白质,我们利用这些蛋白质通过计算设计针对六个化学和结构不同的小分子靶标的结合剂。对所设计结合剂的生物物理表征揭示了纳摩尔至低微摩尔的结合亲和力以及原子水平的设计精度。结合的配体暴露在结合口袋的一侧边缘,这使得能够设计化学诱导二聚化(CID)系统;我们利用这一点创建了一种对皮质醇具有纳摩尔灵敏度的生物传感器。我们的方法提供了一种通用方法,可设计用于广泛分析、环境和生物医学应用中结合和传感小分子的蛋白质。

相似文献

1
Small-molecule binding and sensing with a designed protein family.
bioRxiv. 2023 Nov 2:2023.11.01.565201. doi: 10.1101/2023.11.01.565201.
2
De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles.
bioRxiv. 2023 Dec 21:2023.12.20.572602. doi: 10.1101/2023.12.20.572602.
5
COMBINES-CID: An Efficient Method for De Novo Engineering of Highly Specific Chemically Induced Protein Dimerization Systems.
J Am Chem Soc. 2019 Jul 17;141(28):10948-10952. doi: 10.1021/jacs.9b03522. Epub 2019 Jul 3.
6
Design of High Affinity Binders to Convex Protein Target Sites.
bioRxiv. 2024 May 2:2024.05.01.592114. doi: 10.1101/2024.05.01.592114.
7
Binding and sensing diverse small molecules using shape-complementary pseudocycles.
Science. 2024 Jul 19;385(6706):276-282. doi: 10.1126/science.adn3780. Epub 2024 Jul 18.
8
An enumerative algorithm for de novo design of proteins with diverse pocket structures.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22135-22145. doi: 10.1073/pnas.2005412117. Epub 2020 Aug 24.
9
Design of protein-binding proteins from the target structure alone.
Nature. 2022 May;605(7910):551-560. doi: 10.1038/s41586-022-04654-9. Epub 2022 Mar 24.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验