Suppr超能文献

miR-129-5p作为阿尔茨海默病病理学和认知衰退的生物标志物

miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer's disease.

作者信息

Han Sang-Won, Pyun Jung-Min, Bice Paula J, Bennett David A, Saykin Andrew J, Kim SangYun, Park Young Ho, Nho Kwangsik

机构信息

Chuncheon Sacred Heart Hospital.

Soonchunhyang University Seoul Hospital.

出版信息

Res Sq. 2023 Nov 1:rs.3.rs-3501125. doi: 10.21203/rs.3.rs-3501125/v1.

Abstract

BACKGROUND

Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers.

METHODS

We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification.

RESULTS

Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules, and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs.

CONCLUSIONS

Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.

摘要

背景

阿尔茨海默病性痴呆(AD)的发病机制涉及复杂的机制,包括微小RNA(miRNA)失调。对miRNA进行综合网络和机器学习分析能够为AD病理学以及预后/诊断生物标志物提供见解。

方法

我们进行了共表达网络分析,以使用来自宗教团体研究和拉什记忆与衰老项目(ROS/MAP)(N = 702)的脑组织miRNA谱作为发现数据集,来识别与AD、其神经病理学标志物和认知相关的网络模块。我们对中枢miRNA与AD、其神经病理学标志物和认知进行了关联分析。在选择了中枢miRNA的靶基因后,我们对中枢miRNA与其靶基因进行了关联分析,然后进行了基于通路的富集分析。为了进行验证,我们使用ROS/MAP数据集和来自基因表达综合数据库(GEO)的一个独立数据集(N = 16)进行了一致性miRNA共表达网络分析。此外,我们采用机器学习方法来评估中枢miRNA对AD分类的性能。

结果

网络分析确定了一个富含葡萄糖代谢通路的模块(M3)与AD和认知显著相关。M3的五个中枢miRNA(miR-129-5p、miR-433、miR-1260、miR-200a和miR-221)与AD临床和/或病理特征有显著关联,其中miR129-5p在所有表型中关联最强。对与其相应中枢miRNA相关的靶基因进行基因集富集分析,确定了显著富集的生物通路,包括表皮生长因子受体(ErbB)、腺苷酸活化蛋白激酶(AMPK)、丝裂原活化蛋白激酶(MAPK)和雷帕霉素靶蛋白(mTOR)信号通路。一致性网络分析确定了两个与AD相关的一致性网络模块以及两个中枢miRNA(miR-129-5p和miR-221)。机器学习分析表明,纳入五个与AD相关的中枢miRNA后,年龄、性别和ε4携带者状态的AD分类性能(曲线下面积(AUC) = 0.807)显著提高了6.3%。

结论

综合网络和机器学习分析确定了miRNA特征,尤其是miR-129-5p,与AD、其神经病理学标志物和认知相关,增进了我们对AD发病机制的理解,并导致AD分类作为潜在诊断/预后生物标志物有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db23/10635399/66013e246880/nihpp-rs3501125v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验