Adeleye Samuel A, Yadavalli Srujana S
bioRxiv. 2024 May 2:2023.10.31.565030. doi: 10.1101/2023.10.31.565030.
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint particular residues in QueE that contribute distinctly to each of its functions - Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueEs secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of one gene, one enzyme, one function, which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
在许多生物体中,对不利环境的应激反应可通过改变蛋白质水平、定位、活性或相互作用伙伴来触发某些蛋白质的次要功能。大肠杆菌细胞通过强烈激活PhoQ/PhoP双组分信号系统来响应特定阳离子抗菌肽的存在,该系统调节在此应激下对生长重要的基因。作为该途径的一部分,一种名为QueE的生物合成酶被上调,它催化了queuosine(Q)tRNA修饰形成过程中的一个步骤。当细胞中QueE水平较高时,它会与中央细胞分裂蛋白FtsZ在隔膜部位共定位,阻止细胞分裂并导致丝状生长。在这里,我们表明QueE以剂量依赖的方式影响细胞大小。通过对催化活性位点氨基酸进行丙氨酸扫描诱变,我们确定了QueE中对其每种功能(Q生物合成或细胞分裂调节)有不同贡献的特定残基,从而确定QueE为一种兼职蛋白。我们进一步表明,来自鼠伤寒沙门氏菌和肺炎克雷伯菌等肠道细菌的QueE直系同源物在这些生物体中也会导致丝状生长,但来自铜绿假单胞菌和枯草芽孢杆菌的亲缘关系较远的对应物则缺乏这种能力。通过将大肠杆菌QueE与亲缘关系较远的直系同源物进行比较分析,我们阐明了该蛋白中一个独特的区域,该区域负责QueE作为细胞分裂调节因子的次要功能。像QueE这样的双功能蛋白是一个基因、一种酶、一种功能的传统模型的例外,它在一系列基本细胞过程中具有不同的作用,包括RNA修饰、翻译、细胞分裂和应激反应。