Suppr超能文献

Queuosine 生物合成酶,QueE 兼职作为细胞分裂调节剂。

Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator.

机构信息

Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America.

出版信息

PLoS Genet. 2024 May 20;20(5):e1011287. doi: 10.1371/journal.pgen.1011287. eCollection 2024 May.

Abstract

In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.

摘要

在许多生物体中,对不利环境的应激反应可以通过改变蛋白质水平、定位、活性或相互作用伴侣来触发某些蛋白质的次要功能。大肠杆菌细胞对特定阳离子抗菌肽的存在作出反应,强烈激活 PhoQ/PhoP 双组分信号系统,该系统调节在这种应激下生长的重要基因。作为该途径的一部分,一种叫做 QueE 的生物合成酶被上调,它催化形成 Queuosine (Q) tRNA 修饰的一个步骤。当细胞内 QueE 水平较高时,它与中央细胞分裂蛋白 FtsZ 在隔膜部位共定位,阻断分裂并导致丝状生长。在这里,我们表明 QueE 以剂量依赖的方式影响细胞大小。通过对催化活性位点的氨基酸进行丙氨酸扫描突变,我们确定了 QueE 中对其两种功能(Q 生物合成或细胞分裂调控)都有贡献的残基,从而确立了 QueE 是一种多功能蛋白。我们进一步表明,来自肠杆菌属的 QueE 同源物,如鼠伤寒沙门氏菌和肺炎克雷伯菌,也会导致这些生物体的丝状生长,但来自铜绿假单胞菌和枯草芽孢杆菌的更远缘同源物缺乏这种能力。通过对大肠杆菌 QueE 与远缘同源物的比较分析,我们阐明了该蛋白中一个独特的区域,该区域负责 QueE 作为细胞分裂调节剂的次要功能。像 QueE 这样的双功能蛋白是“一个基因、一个酶、一个功能”的传统模型的例外,它在一系列基本细胞过程中具有不同的作用,包括 RNA 修饰和翻译到细胞分裂和应激反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e90f/11142719/13810342875f/pgen.1011287.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验