Keck Medical Center, Department of Radiology, University of Southern California, Los Angeles, California, USA.
Department of Physics and Computational Radiology, Oslo, Norway.
J Appl Clin Med Phys. 2024 Apr;25(4):e14192. doi: 10.1002/acm2.14192. Epub 2023 Nov 14.
This study assesses the robustness of first-order radiomic texture features namely interquartile range (IQR), coefficient of variation (CV) and standard deviation (SD) derived from computed tomography (CT) images by varying dose, reconstruction algorithms and slice thickness using scans of a uniform water phantom, a commercial anthropomorphic liver phantom, and a human liver in-vivo.
Scans were acquired on a 16 cm detector GE Revolution Apex Edition CT scanner with variations across three different nominal slice thicknesses: 0.625, 1.25, and 2.5 mm, three different dose levels: CTDIvol of 13.86 mGy for the standard dose, 40% reduced dose and 60% reduced dose and two different reconstruction algorithms: a deep learning image reconstruction (DLIR-high) algorithm and a hybrid iterative reconstruction (IR) algorithm ASiR-V50% (AV50) were explored, varying one at a time. To assess the effect of non-linear modifications of images by AV50 and DLIR-high, images of the water phantom were also reconstructed using filtered back projection (FBP). Quantitative measures of IQR, CV and SD were extracted from twelve pre-selected, circular (1 cm diameter) regions of interest (ROIs) capturing different texture patterns across all scans.
Across all scans, imaging, and reconstruction settings, CV, IQR and SD were observed to increase with reduction in dose and slice thickness. An exception to this observation was found when using FBP reconstruction. Lower values of CV, IQR and SD were observed in DLIR-high reconstructions compared to AV50 and FBP. The Poisson statistics were more stringently noted in FBP than DLIR-high and AV50, due to the non-linear nature of the latter two algorithms.
Variation in image noise due to dose reduction algorithms, tube current, and slice thickness show a consistent trend across phantom and patient scans. Prospective evaluation across multiple centers, scanners and imaging protocols is needed for establishing quality assurance standards of radiomics.
本研究通过在均匀水模体、商用人体肝脏模拟模体和人体肝脏的扫描中改变剂量、重建算法和切片厚度,评估从 CT 图像中提取的一阶放射组学纹理特征(即四分位距(IQR)、变异系数(CV)和标准差(SD))的稳健性。
使用不同标称切片厚度(0.625、1.25 和 2.5mm)、三种不同剂量水平(标准剂量时的 CTDIvol 为 13.86mGy、剂量降低 40%和 60%)和两种不同重建算法(深度学习图像重建(DLIR-high)算法和混合迭代重建(IR)算法 ASiR-V50%(AV50))的 16cm 探测器 GE Revolution Apex Edition CT 扫描仪获取扫描,每次改变一个参数。为了评估 AV50 和 DLIR-high 对图像非线性修正的影响,还使用滤波反投影(FBP)对水模体的图像进行重建。从所有扫描的十二个预选定圆形(1cm 直径)感兴趣区域(ROI)中提取 IQR、CV 和 SD 的定量测量值,以捕获不同的纹理模式。
在所有扫描、成像和重建设置中,观察到 CV、IQR 和 SD 随着剂量和切片厚度的降低而增加。但当使用 FBP 重建时,观察到了一个例外。与 AV50 和 FBP 相比,DLIR-high 重建的 CV、IQR 和 SD 值较低。由于后两种算法的非线性性质,FBP 比 DLIR-high 和 AV50 更严格地注意到泊松统计数据。
由于剂量降低算法、管电流和切片厚度导致的图像噪声变化在模体和患者扫描中呈现出一致的趋势。需要在多个中心、扫描仪和成像协议中进行前瞻性评估,以建立放射组学的质量保证标准。