Zhao Binsheng
Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States.
Front Oncol. 2021 Mar 29;11:633176. doi: 10.3389/fonc.2021.633176. eCollection 2021.
Radiomics is the method of choice for investigating the association between cancer imaging phenotype, cancer genotype and clinical outcome prediction in the era of precision medicine. The fast dispersal of this new methodology has benefited from the existing advances of the core technologies involved in radiomics workflow: image acquisition, tumor segmentation, feature extraction and machine learning. However, despite the rapidly increasing body of publications, there is no real clinical use of a developed radiomics signature so far. Reasons are multifaceted. One of the major challenges is the lack of reproducibility and generalizability of the reported radiomics signatures (features and models). Sources of variation exist in each step of the workflow; some are controllable or can be controlled to certain degrees, while others are uncontrollable or even unknown. Insufficient transparency in reporting radiomics studies further prevents translation of the developed radiomics signatures from the bench to the bedside. This review article first addresses sources of variation, which is illustrated using demonstrative examples. Then, it reviews a number of published studies and progresses made to date in the investigation and improvement of feature reproducibility and model performance. Lastly, it discusses potential strategies and practical considerations to reduce feature variability and improve the quality of radiomics study. This review focuses on CT image acquisition, tumor segmentation, quantitative feature extraction, and the disease of lung cancer.
在精准医学时代,放射组学是研究癌症影像表型、癌症基因型与临床结局预测之间关联的首选方法。这种新方法的迅速传播得益于放射组学工作流程中所涉及的核心技术的现有进展:图像采集、肿瘤分割、特征提取和机器学习。然而,尽管发表的文献数量迅速增加,但到目前为止,尚未有已开发的放射组学特征在临床上得到实际应用。原因是多方面的。主要挑战之一是所报道的放射组学特征(特征和模型)缺乏可重复性和通用性。工作流程的每个步骤中都存在变异来源;有些是可控的,或者可以在一定程度上得到控制,而有些则是不可控的甚至是未知的。放射组学研究报告的透明度不足进一步阻碍了已开发的放射组学特征从实验室到临床的转化。这篇综述文章首先探讨变异来源,并通过示例进行说明。然后,回顾了一些已发表的研究以及迄今为止在研究和提高特征可重复性及模型性能方面所取得的进展。最后,讨论了减少特征变异性和提高放射组学研究质量的潜在策略和实际考虑因素。本综述重点关注CT图像采集、肿瘤分割、定量特征提取以及肺癌疾病。