Tarbaeva N V, Manaev A V, Ivashchenko K V, Platonova N M, Beltsevich D G, Pachuashvili N V, Urusova L S, Mokrysheva N G
Endocrinology Research Center, Moscow, Russia.
Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.
Front Radiol. 2025 Aug 7;5:1635425. doi: 10.3389/fradi.2025.1635425. eCollection 2025.
Adrenocortical carcinoma presents significant diagnostic challenges due to its histological heterogeneity and variable clinical behavior. This study aimed to evaluate the diagnostic value of radiomic features in predicting mitotic activity (low/high-grade) and morphological variants (conventional, oncocytic, myxoid) of adrenocortical carcinoma.
A retrospective analysis of 32 patients with histologically confirmed ACC (18 conventional, 9 oncocytic and 5 myxoid cases) was performed, with mitotic data available for 25 cases (13 low-grade and 12 high-grade cases). Radiomic features including Gray-Level Co-occurrence Matrix (GLCM), Run-Length (GLRLM), Size-Zone (GLSZM), Dependence (GLDM), Neighboring-Tone (NGTDM) and first order features were extracted from four-phase CT using PyRadiomics after manual 3D segmentation. Statistical analysis included Mann-Whitney , Kruskal-Wallis tests, ROC curve (AUC, sensitivity, specificity) and PPV, NPV assessment.
Our analysis demonstrated statistically significant differences between tumor grades with firstorder_Skewness (AUC = 0.924, 95% CI: 0.819-0.986; = 0.005) showing high predictive performance in the venous phase. Radiomic features did not show statistically significant differences between morphological variants of ACC after adjustment for multiple comparisons.
Our results confirm the value of CT radiomics for preoperative stratification of ACC grade, but the question of differentiation of morphological variants remains unresolved and requires further validation in larger cohorts.
肾上腺皮质癌因其组织学异质性和临床行为多变而带来显著的诊断挑战。本研究旨在评估影像组学特征在预测肾上腺皮质癌的有丝分裂活性(低/高级别)和形态学变异(经典型、嗜酸性细胞型、黏液样型)方面的诊断价值。
对32例经组织学确诊的肾上腺皮质癌患者(18例经典型、9例嗜酸性细胞型和5例黏液样型病例)进行回顾性分析,其中25例有有丝分裂数据(13例低级别和12例高级别病例)。在手动进行三维分割后,使用PyRadiomics从四期CT中提取包括灰度共生矩阵(GLCM)、游程长度(GLRLM)、大小区域(GLSZM)、依赖性(GLDM)、邻域灰度差矩阵(NGTDM)和一阶特征在内的影像组学特征。统计分析包括曼-惠特尼检验、克鲁斯卡尔-沃利斯检验、ROC曲线(AUC、敏感性、特异性)以及阳性预测值、阴性预测值评估。
我们的分析表明,肿瘤级别之间存在统计学显著差异,一阶偏度(AUC = 0.924,95% CI:0.819 - 0.986;P = 0.005)在静脉期显示出较高的预测性能。在进行多重比较校正后,影像组学特征在肾上腺皮质癌的形态学变异之间未显示出统计学显著差异。
我们的结果证实了CT影像组学在肾上腺皮质癌术前分级分层中的价值,但形态学变异的鉴别问题仍未解决,需要在更大的队列中进一步验证。