Suppr超能文献

基于蛋白质相互作用网络的图卷积神经网络学习改善癌症生存预测。

Improving Cancer Survival Prediction via Graph Convolutional Neural Network Learning on Protein-Protein Interaction Networks.

出版信息

IEEE J Biomed Health Inform. 2024 Feb;28(2):1134-1143. doi: 10.1109/JBHI.2023.3332640. Epub 2024 Feb 5.

Abstract

Cancer is one of the most challenging health problems worldwide. Accurate cancer survival prediction is vital for clinical decision making. Many deep learning methods have been proposed to understand the association between patients' genomic features and survival time. In most cases, the gene expression matrix is fed directly to the deep learning model. However, this approach completely ignores the interactions between biomolecules, and the resulting models can only learn the expression levels of genes to predict patient survival. In essence, the interaction between biomolecules is the key to determining the direction and function of biological processes. Proteins are the building blocks and principal undertakings of life activities, and as such, their complex interaction network is potentially informative for deep learning methods. Therefore, a more reliable approach is to have the neural network learn both gene expression data and protein interaction networks. We propose a new computational approach, termed CRESCENT, which is a protein-protein interaction (PPI) prior knowledge graph-based convolutional neural network (GCN) to improve cancer survival prediction. CRESCENT relies on the gene expression networks rather than gene expression levels to predict patient survival. The performance of CRESCENT is evaluated on a large-scale pan-cancer dataset consisting of 5991 patients from 16 different types of cancers. Extensive benchmarking experiments demonstrate that our proposed method is competitive in terms of the evaluation metric of the time-dependent concordance index( C) when compared with several existing state-of-the-art approaches. Experiments also show that incorporating the network structure between genomic features effectively improves cancer survival prediction.

摘要

癌症是全球面临的最具挑战性的健康问题之一。准确的癌症生存预测对于临床决策至关重要。已经提出了许多深度学习方法来理解患者基因组特征与生存时间之间的关联。在大多数情况下,基因表达矩阵直接输入到深度学习模型中。然而,这种方法完全忽略了生物分子之间的相互作用,并且由此产生的模型只能学习基因的表达水平来预测患者的生存情况。从本质上讲,生物分子之间的相互作用是决定生物过程方向和功能的关键。蛋白质是生命活动的构建块和主要执行者,因此,它们复杂的相互作用网络对于深度学习方法具有潜在的信息价值。因此,更可靠的方法是让神经网络同时学习基因表达数据和蛋白质相互作用网络。我们提出了一种新的计算方法,称为 CRESCENT,这是一种基于蛋白质-蛋白质相互作用(PPI)先验知识图的卷积神经网络(GCN),用于提高癌症生存预测。CRESCENT 依赖于基因表达网络而不是基因表达水平来预测患者的生存情况。在由来自 16 种不同癌症的 5991 名患者组成的大规模泛癌症数据集上评估了 CRESCENT 的性能。广泛的基准实验表明,与几种现有的最先进方法相比,我们提出的方法在时间依赖性一致性指数(C)的评估指标方面具有竞争力。实验还表明,有效结合基因组特征之间的网络结构可以改善癌症生存预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验