Suppr超能文献

PCP-GC-LM:基于双图卷积神经网络和卷积神经网络的单序列蛋白质接触预测。

PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.

机构信息

Key Laboratory of Intelligent Computing Information Processing, Xiangtan University, Xiangtan, China.

School of Computer Science, Xiangtan University, Xiangtan, China.

出版信息

BMC Bioinformatics. 2024 Sep 2;25(1):287. doi: 10.1186/s12859-024-05914-3.

Abstract

BACKGROUND

Recently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of orphans and other fewer evolution information proteins. (2) The other bottleneck is the method of predicting single-sequence-based proteins mainly focuses on selecting protein sequence features and tuning the neural network architecture, However, while the deeper neural networks improve prediction accuracy, there is still the problem of increasing the computational burden. Compared with other neural networks in the field of protein prediction, the graph neural network has the following advantages: due to the advantage of revealing the topology structure via graph neural network and being able to take advantage of the hierarchical structure and local connectivity of graph neural networks has certain advantages in capturing the features of different levels of abstraction in protein molecules. When using protein sequence and structure information for joint training, the dependencies between the two kinds of information can be better captured. And it can process protein molecular structures of different lengths and shapes, while traditional neural networks need to convert proteins into fixed-size vectors or matrices for processing.

RESULTS

Here, we propose a single-sequence-based protein contact map predictor PCP-GC-LM, with dual-level graph neural networks and convolution networks. Our method performs better with other single-sequence-based predictors in different independent tests. In addition, to verify the validity of our method against complex protein structures, we will also compare it with other methods in two homodimers protein test sets (DeepHomo test dataset and CASP-CAPRI target dataset). Furthermore, we also perform ablation experiments to demonstrate the necessity of a dual graph network. In all, our framework presents new modules to accurately predict inter-chain contact maps in protein and it's also useful to analyze interactions in other types of protein complexes.

摘要

背景

最近,进化信息过程和深度学习网络的发展促进了蛋白质接触预测方法的改进。然而,仍然存在一些瓶颈:(1)其中一个瓶颈是预测孤儿和其他进化信息较少的蛋白质。(2)另一个瓶颈是基于单序列的蛋白质预测方法主要侧重于选择蛋白质序列特征和调整神经网络架构,然而,虽然更深的神经网络提高了预测精度,但仍然存在计算负担增加的问题。与蛋白质预测领域的其他神经网络相比,图神经网络具有以下优势:由于图神经网络能够揭示拓扑结构的优势,并且能够利用图神经网络的层次结构和局部连接性,因此在捕获蛋白质分子不同层次的特征方面具有一定的优势。在联合使用蛋白质序列和结构信息进行训练时,可以更好地捕捉两种信息之间的依赖关系。并且可以处理不同长度和形状的蛋白质分子结构,而传统的神经网络需要将蛋白质转换为固定大小的向量或矩阵进行处理。

结果

在这里,我们提出了一种基于单序列的蛋白质接触图预测器 PCP-GC-LM,它具有双级图神经网络和卷积网络。在不同的独立测试中,我们的方法比其他基于单序列的预测器表现更好。此外,为了验证我们的方法对复杂蛋白质结构的有效性,我们还将其与其他方法在两个同源二聚体蛋白质测试集(DeepHomo 测试数据集和 CASP-CAPRI 目标数据集)中进行了比较。此外,我们还进行了消融实验来证明双图网络的必要性。总之,我们的框架提出了新的模块,可以准确预测蛋白质中的链间接触图,并且对分析其他类型的蛋白质复合物的相互作用也很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb2/11370006/81d38f1903ed/12859_2024_5914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验