Suppr超能文献

网络特征推动开放协作系统中的知识进化。

Network traits driving knowledge evolution in open collaboration systems.

机构信息

Institute of Cultural and Creative Industry, Shanghai Jiao Tong University, Shanghai, China.

出版信息

PLoS One. 2023 Nov 14;18(11):e0291097. doi: 10.1371/journal.pone.0291097. eCollection 2023.

Abstract

Network interpretation illuminates our understanding of the dynamic nature of cultural evolution. Guided by cultural evolution theory, this article explores how people collectively develop knowledge through knowledge collaboration network traits. Using network data from 910 artifacts (the WikiProject Aquarium Fishes articles) over 163 weeks, two studies were designed to understand how collaboration network traits drive population and artifact-level knowledge evolution. The first study examines the selection pressure imposed by10 network traits (against 11 content traits) on population-level evolutionary outcomes. While network traits are vital in identifying natural selection pressure, intriguingly, no significant difference was found between network traits and content traits, challenging a recent theory on network-driven evolution. The second study utilizes time series analysis to reveal that three network traits (embeddedness, connectivity, and redundancy) at a prior time predict future artifact development trajectory. This implies that people collectively explore various positions in a potential solution space, suggesting content exploration as a possible explanation of knowledge evolution. In summary, understanding the interplay between network traits and content exploration provides valuable insights into the mechanisms driving knowledge evolution and offers new avenues for future research.

摘要

网络解释阐明了我们对文化进化动态性质的理解。本文以文化进化理论为指导,探讨了人们如何通过知识协作网络特征共同发展知识。利用来自 163 周的 910 个人工制品(维基百科水族箱鱼类项目的文章)的网络数据,设计了两项研究来理解协作网络特征如何驱动种群和人工制品级别的知识进化。第一项研究考察了 10 个网络特征(对比 11 个内容特征)对种群水平进化结果的选择压力。虽然网络特征在识别自然选择压力方面至关重要,但有趣的是,网络特征和内容特征之间没有发现显著差异,这对最近关于网络驱动进化的理论提出了挑战。第二项研究利用时间序列分析揭示了先前三个网络特征(嵌入性、连接性和冗余性)可以预测未来人工制品的发展轨迹。这意味着人们共同探索潜在解决方案空间中的各种位置,暗示了内容探索是知识进化的一种可能解释。总的来说,理解网络特征和内容探索之间的相互作用为理解驱动知识进化的机制提供了有价值的见解,并为未来的研究提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a6b/10645342/7757917aff7d/pone.0291097.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验