Zhao Yi, Luo Xi
Department of Biostatistics, Brown University, Providence, Rhode Island.
Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, Texas.
Biometrics. 2019 Sep;75(3):788-798. doi: 10.1111/biom.13056. Epub 2019 Apr 29.
This paper presents Granger mediation analysis, a new framework for causal mediation analysis of multiple time series. This framework is motivated by a functional magnetic resonance imaging (fMRI) experiment where we are interested in estimating the mediation effects between a randomized stimulus time series and brain activity time series from two brain regions. The independent observation assumption is thus unrealistic for this type of time-series data. To address this challenge, our framework integrates two types of models: causal mediation analysis across the mediation variables, and vector autoregressive (VAR) models across the temporal observations. We use "Granger" to refer to VAR correlations modeled in this paper. We further extend this framework to handle multilevel data, in order to model individual variability and correlated errors between the mediator and the outcome variables. Using Rubin's potential outcome framework, we show that the causal mediation effects are identifiable under our time-series model. We further develop computationally efficient algorithms to maximize our likelihood-based estimation criteria. Simulation studies show that our method reduces the estimation bias and improves statistical power, compared with existing approaches. On a real fMRI data set, our approach quantifies the causal effects through a brain pathway, while capturing the dynamic dependence between two brain regions.
本文提出了格兰杰中介分析,这是一种用于多个时间序列因果中介分析的新框架。该框架的灵感来自于一项功能磁共振成像(fMRI)实验,在该实验中,我们感兴趣的是估计随机刺激时间序列与来自两个脑区的脑活动时间序列之间的中介效应。因此,独立观察假设对于这类时间序列数据是不现实的。为了应对这一挑战,我们的框架整合了两种类型的模型:跨中介变量的因果中介分析和跨时间观测的向量自回归(VAR)模型。我们用“格兰杰”来指代本文中建模的VAR相关性。我们进一步扩展这个框架以处理多级数据,以便对中介变量和结果变量之间的个体变异性和相关误差进行建模。使用鲁宾的潜在结果框架,我们表明在我们的时间序列模型下因果中介效应是可识别的。我们进一步开发了计算效率高的算法,以最大化基于似然的估计标准。模拟研究表明,与现有方法相比,我们的方法减少了估计偏差并提高了统计功效。在一个真实的fMRI数据集上,我们的方法通过一条脑通路量化了因果效应,同时捕捉了两个脑区之间的动态依赖性。