Department of Psychology, Stanford University, Stanford, CA, 94305
Department of Psychology, Stanford University, Stanford, CA, 94305.
J Neurosci. 2024 Jan 10;44(2):e0803232023. doi: 10.1523/JNEUROSCI.0803-23.2023.
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and temporal windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverging spatial and temporal windows across streams, and (3) within early visual areas (V1-V3), both spatial and temporal windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.
功能磁共振成像(fMRI)和计算模型的应用推动了对人类视觉皮层中群体感受野(pRF)空间特征的理解。然而,我们对 pRF 的时空特征知之甚少,因为神经元的时间特性比 fMRI 的 BOLD 反应快一到两个数量级。在这里,我们开发了一种图像可计算的框架,可从 fMRI 数据中估计时空 pRF。首先,我们开发了一个模拟软件,该软件可以根据时空 pRF 模型预测时变视觉输入的 fMRI 响应,并求解模型参数。该模拟器表明,可以从合成的 fMRI 响应中以毫秒级的分辨率准确恢复真实的时空参数。然后,我们使用 fMRI 和一种新的刺激范式,在 10 名参与者(包括女性和男性)的整个视觉皮层中单个体素上绘制了时空 pRF。我们发现,在跨越背侧、外侧和腹侧流的视觉区域中,与传统的空间 pRF 模型相比,压缩时空(CST)pRF 模型能更好地解释 fMRI 响应。此外,我们发现时空 pRF 具有三个组织原则:(1)在视觉流内从早期到晚期区域,pRF 的空间和时间窗口的大小逐渐增大,表现出更强的压缩非线性;(2)在晚期视觉区域中,跨流的空间和时间窗口不同;(3)在早期视觉区域(V1-V3)中,空间和时间窗口都随着离中心距离的增加而系统地增加。总的来说,这种计算框架和实验结果为使用 fMRI 对神经反应的精细时空动态进行建模和测量开辟了令人兴奋的新可能性。