Department of Psychology, Stanford University, Stanford, CA, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
Nat Commun. 2024 Aug 11;15(1):6885. doi: 10.1038/s41467-024-51243-7.
When multiple visual stimuli are presented simultaneously in the receptive field, the neural response is suppressed compared to presenting the same stimuli sequentially. The prevailing hypothesis suggests that this suppression is due to competition among multiple stimuli for limited resources within receptive fields, governed by task demands. However, it is unknown how stimulus-driven computations may give rise to simultaneous suppression. Using fMRI, we find simultaneous suppression in single voxels, which varies with both stimulus size and timing, and progressively increases up the visual hierarchy. Using population receptive field (pRF) models, we find that compressive spatiotemporal summation rather than compressive spatial summation predicts simultaneous suppression, and that increased simultaneous suppression is linked to larger pRF sizes and stronger compressive nonlinearities. These results necessitate a rethinking of simultaneous suppression as the outcome of stimulus-driven compressive spatiotemporal computations within pRFs, and open new opportunities to study visual processing capacity across space and time.
当多个视觉刺激同时呈现在感受野中时,与依次呈现相同刺激相比,神经反应会受到抑制。主流假说认为,这种抑制是由于感受野内多个刺激对有限资源的竞争引起的,这种竞争受到任务需求的调节。然而,目前尚不清楚刺激驱动的计算如何导致同时抑制。本研究使用 fMRI 发现了单个体素中的同时抑制,其与刺激大小和时间有关,并沿视觉层级逐渐增加。使用群体感受野 (pRF) 模型,我们发现压缩时空总和而不是压缩空间总和可以预测同时抑制,并且同时抑制的增加与更大的 pRF 大小和更强的压缩非线性有关。这些结果需要重新思考同时抑制作为 pRF 内刺激驱动的压缩时空计算的结果,并为跨空间和时间研究视觉处理能力开辟了新的机会。