Ai Changzhi, Chang Jin Hyun, Tygesen Alexander Sougaard, Vegge Tejs, Hansen Heine Anton
Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800, Kongens Lyngby, Dänemark.
ChemSusChem. 2024 Mar 22;17(6):e202301277. doi: 10.1002/cssc.202301277. Epub 2023 Dec 6.
Electrochemical experiments and theoretical calculations have shown that Pd-based metal hydrides can perform well for the CO reduction reaction (CORR). Our previous work on doped-PdH showed that doping Ti and Nb into PdH can improve the CORR activity, suggesting that the Pd alloy hydrides with better performance are likely to be found in the PdTiH and PdNbH phase space. However, the vast compositional and structural space with different alloy hydride compositions and surface adsorbates, makes it intractable to screen out the stable and active PdMH catalysts using density functional theory calculations. Herein, an active learning cluster expansion (ALCE) surrogate model equipped with Monte Carlo simulated annealing (MCSA), a CO* binding energy filter and a kinetic model are used to identify promising PdTiH and PdNbH catalysts with high stability and superior activity. Using our approach, we identify 24 stable and active candidates of PdTiH and 5 active candidates of PdNbH. Among these candidates, the PdTiH, PdTiH, and PdNbH are predicted to display current densities of approximately 5.1, 5.1 and 4.6 μA cm at -0.5 V overpotential, respectively, which are significantly higher than that of PdH at 3.7 μA cm.
电化学实验和理论计算表明,钯基金属氢化物在CO还原反应(CORR)中表现良好。我们之前关于掺杂PdH的研究表明,将Ti和Nb掺杂到PdH中可以提高CORR活性,这表明在PdTiH和PdNbH相空间中可能会发现性能更好的钯合金氢化物。然而,具有不同合金氢化物组成和表面吸附物的巨大成分和结构空间,使得使用密度泛函理论计算筛选出稳定且活性高的PdMH催化剂变得棘手。在此,我们使用配备蒙特卡罗模拟退火(MCSA)的主动学习簇扩展(ALCE)替代模型、CO*结合能过滤器和动力学模型来识别具有高稳定性和优异活性的有前景的PdTiH和PdNbH催化剂。使用我们的方法,我们识别出24种稳定且活性高的PdTiH候选物和5种活性高的PdNbH候选物。在这些候选物中,预测PdTiH、PdTiH和PdNbH在-0.5 V过电位下的电流密度分别约为5.1、5.1和4.6 μA cm,明显高于PdH的3.7 μA cm。