Ai Changzhi, Vegge Tejs, Hansen Heine Anton
Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs., Lyngby, Denmark.
ChemSusChem. 2022 May 20;15(10):e202200008. doi: 10.1002/cssc.202200008. Epub 2022 Apr 8.
PdH-based catalysts hold promise for both CO reduction to CO and the hydrogen evolution reaction. Density functional theory is used to systematically screen for stability, activity, and selectivity of transition metal dopants in PdH. The transition metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into PdH(111) surface with six different doping configurations: single, dimer, triangle, parallelogram, island, and overlayer. We find that several dopants, such as Ti and Nb, have excellent predicted catalytic activity and CO selectivity compared to the pure PdH hydride. In addition, they display good stability due to their negative doping formation energy. The improved performance can be assigned to reaction intermediates forming two bonds consisting of one C-Metal and one O-Metal bond on the PdH surface, which break the scaling relations of intermediates, and thus have stronger HOCO* binding facilitating CO activation.
基于PdH的催化剂在将CO还原为CO以及析氢反应方面都具有潜力。密度泛函理论被用于系统地筛选PdH中过渡金属掺杂剂的稳定性、活性和选择性。过渡金属元素Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Ag、Cd、Hf、Ta、W和Re以六种不同的掺杂构型掺杂到PdH(111)表面:单原子、二聚体、三角形、平行四边形、岛状和覆盖层。我们发现,与纯PdH氢化物相比,几种掺杂剂,如Ti和Nb,具有优异的预测催化活性和CO选择性。此外,由于它们的负掺杂形成能,它们表现出良好的稳定性。性能的提高可归因于反应中间体在PdH表面形成两个由一个C-金属键和一个O-金属键组成的键,这打破了中间体的比例关系,从而具有更强的HOCO*结合力,促进了CO活化。