Suppr超能文献

基于尺度不变特征和极端梯度提升的息肉分类计算机辅助诊断

Computer-aided Diagnosis of Polyp Classification Using Scale Invariant Features and Extreme Gradient Boosting.

作者信息

Don S

机构信息

Department of Computer Science and Applications, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India.

出版信息

J Med Phys. 2023 Jul-Sep;48(3):230-237. doi: 10.4103/jmp.jmp_29_23. Epub 2023 Sep 18.

Abstract

AIMS

Analysis of colonoscopy images is an important diagnostic procedure in the identification of colorectal cancer. It has been observed that owing to advancements in technology, numerous machine-learning models now excel in the analysis of colorectal polyps classification. This work focused on developing a framework that can classify polyps using images during colonoscopy.

MATERIALS AND METHODS

First, the images were corrected by removing their spectral reflection. Second, feature pools were obtained by applying Radon transform (=45, 90, 135, and 180). From the Radon transform, fractal dimension was calculated as a feature vector combined with Zernike moment obtained from the Zernike features. Finally, Extreme Gradient Boosting (XGBoost) algorithm was applied for the classification and to compare it with state-of-the-art methods.

RESULTS

The experimental results obtained with the proposed framework have been reported, cross-validated, and discussed. The proposed method gives a classification accuracy of 93% for light XGBoost and 92% for XGBoost.

CONCLUSION

This study shows that by applying scale invariant features over a small dataset, XGBoost outperforms state-of-the-art methods when it comes to polyp classification.

摘要

目的

结肠镜检查图像分析是结直肠癌识别中的一项重要诊断程序。据观察,由于技术进步,现在许多机器学习模型在结直肠息肉分类分析方面表现出色。这项工作专注于开发一个能够在结肠镜检查期间使用图像对息肉进行分类的框架。

材料与方法

首先,通过去除图像的光谱反射对其进行校正。其次,通过应用拉东变换(=45、90、135和180)获得特征池。从拉东变换中,计算分形维数作为与从泽尼克特征获得的泽尼克矩相结合的特征向量。最后,应用极端梯度提升(XGBoost)算法进行分类,并将其与现有最先进的方法进行比较。

结果

已报告、交叉验证并讨论了使用所提出框架获得的实验结果。所提出的方法对于轻量级XGBoost的分类准确率为93%,对于XGBoost为92%。

结论

本研究表明,通过在小数据集上应用尺度不变特征,在息肉分类方面,XGBoost优于现有最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f1d/10642600/30fcadd4c90d/JMP-48-230-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验