Ufkes Steven, Zuercher Mael, Erdman Lauren, Slorach Cameron, Mertens Luc, Taylor Katherine L
Division of Genetics and Genome Biology, Centre for Computational Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada.
Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
CJC Pediatr Congenit Heart Dis. 2022 Nov 9;2(1):12-19. doi: 10.1016/j.cjcpc.2022.11.001. eCollection 2023 Feb.
Cardiac output (CO) perturbations are common and cause significant morbidity and mortality. Accurate CO assessment is crucial for guiding treatment in anaesthesia and critical care, but measurement is difficult, even for experts. Artificial intelligence methods show promise as alternatives for accurate, rapid CO assessment.
We reviewed paediatric echocardiograms with normal CO and a dilated cardiomyopathy patient group with reduced CO. Experts measured the left ventricular outflow tract diameter, velocity time integral, CO, and cardiac index (CI). EchoNet-Dynamic is a deep learning model for estimation of ejection fraction in adults. We modified this model to predict the left ventricular outflow tract diameter and retrained it on paediatric data. We developed a novel deep learning approach for velocity time integral estimation. The combined models enable automatic prediction of CO. We evaluated the models against expert measurements. Primary outcomes were root-mean-squared error, mean absolute error, mean average percentage error, and coefficient of determination ().
In a test set unused during training, CI was estimated with the root-mean-squared error of 0.389 L/min/m, mean absolute error of 0.321 L/min/m, mean average percentage error of 10.8%, and of 0.755. The Bland-Altman analysis showed that the models estimated CI with a bias of +0.14 L/min/m and 95% limits of agreement -0.58 to 0.86 L/min/m.
Our model estimated CO with strong correlation to ground truth and a bias of 0.17 L/min, better than many CO measurements in paediatrics. Model pretraining enabled accurate estimation despite a small dataset. Potential uses include supporting clinicians in real-time bedside calculation of CO, identification of low-CO states, and treatment responses.
心输出量(CO)波动常见,会导致严重的发病率和死亡率。准确的心输出量评估对于指导麻醉和重症监护治疗至关重要,但即使对于专家而言,测量也很困难。人工智能方法有望成为准确、快速心输出量评估的替代方法。
我们回顾了心输出量正常的儿科超声心动图以及心输出量降低的扩张型心肌病患者组。专家测量了左心室流出道直径、速度时间积分、心输出量和心脏指数(CI)。EchoNet-Dynamic是一种用于估计成人射血分数的深度学习模型。我们修改了该模型以预测左心室流出道直径,并在儿科数据上对其进行重新训练。我们开发了一种用于速度时间积分估计的新型深度学习方法。组合模型能够自动预测心输出量。我们根据专家测量结果对模型进行了评估。主要结果是均方根误差、平均绝对误差、平均平均百分比误差和决定系数()。
在训练期间未使用的测试集中,估计的心脏指数的均方根误差为0.389L/min/m²,平均绝对误差为0.321L/min/m²,平均平均百分比误差为10.8%,决定系数为0.755。Bland-Altman分析表明,模型估计的心脏指数偏差为+0.14L/min/m²,95%一致性界限为-0.58至0.86L/min/m²。
我们的模型估计的心输出量与实际值具有很强的相关性,偏差为0.17L/min,优于儿科中许多心输出量测量值。尽管数据集较小,但模型预训练仍能实现准确估计。潜在用途包括支持临床医生在床边实时计算心输出量、识别低心输出量状态以及治疗反应。