Singh Sajan, Ghoshal Tandra, Prochukhan Nadezda, Fernandez Alberto Alvarez, Vasquez Jhonattan Frank Baez, Yadav Pravind, Padmanabhan Sibu C, Morris Michael A
AMBER Research Centre and School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland.
ACS Appl Polym Mater. 2023 Nov 2;5(11):9612-9619. doi: 10.1021/acsapm.3c02120. eCollection 2023 Nov 10.
In the present work, we demonstrate the formation of oxide porous and nanodot structures from the same block copolymer (BCP) by the phase inversion of a BCP template. We investigated the effect of solvent annealing time on the ordering of asymmetric, cylinder forming, polystyrene--poly(4-vinylpyridine) (PS--P4VP) BCP. Phase separation of PS--P4VP was achieved by solvent vapor annealing (SVA) in a solvent atmosphere that is (partially) selective to P4VP to initially generate hexagonally arranged, cylindrical arrays of the expected structure. The morphology of the BCP changed from P4VP hexagonally packed cylinders to an 'inverse' structure with PS cylinders embedded in a P4VP matrix. This suggests that selective swelling occurs over time such that the swollen P4VP phase becomes the majority volume component. Metal ions (Ga, In) were infiltrated into the BCP templates by a solution-mediated infiltration approach, followed by an ultraviolet-ozone treatment to remove the polymer and oxidize the metallic ions to their oxides. The findings show that a single BCP can be used to create both metal oxide arrays and porous structures of metal oxides by simply varying the duration of the solvent annealing process. The resulting structures were analyzed through several methods including scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, and energy-dispersive X-ray spectroscopy. XPS analyses confirmed the complete elimination of the BCP template and the presence of metal oxides. This study provides important insights into the development of functional BCP materials with inverse structures.
在本工作中,我们展示了通过嵌段共聚物(BCP)模板的相转化,由同一嵌段共聚物形成氧化物多孔结构和纳米点结构。我们研究了溶剂退火时间对不对称、形成圆柱状的聚苯乙烯-聚(4-乙烯基吡啶)(PS-P4VP)BCP有序性的影响。PS-P4VP的相分离是通过在对P4VP(部分)具有选择性的溶剂气氛中进行溶剂气相退火(SVA)来实现的,最初生成预期结构的六方排列圆柱阵列。BCP的形态从P4VP六方堆积圆柱变为PS圆柱嵌入P4VP基质的“反相”结构。这表明随着时间的推移会发生选择性溶胀,使得溶胀的P4VP相成为主要体积组分。金属离子(Ga、In)通过溶液介导的渗透方法渗入BCP模板,随后进行紫外臭氧处理以去除聚合物并将金属离子氧化为其氧化物。研究结果表明,通过简单改变溶剂退火过程的持续时间,单一的BCP可用于创建金属氧化物阵列和金属氧化物多孔结构。通过扫描电子显微镜、原子力显微镜、X射线光电子能谱(XPS)、透射电子显微镜和能量色散X射线光谱等多种方法对所得结构进行了分析。XPS分析证实了BCP模板的完全去除以及金属氧化物的存在。本研究为具有反相结构的功能性BCP材料的开发提供了重要见解。