Suppr超能文献

基于脑结构-功能深度融合网络的阿尔茨海默病预测。

Alzheimer's Disease Prediction via Brain Structural-Functional Deep Fusing Network.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:4601-4612. doi: 10.1109/TNSRE.2023.3333952. Epub 2023 Nov 23.

Abstract

Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer's disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights into detecting AD-related abnormal neural circuits.

摘要

融合大脑的结构-功能图像已显示出分析阿尔茨海默病(AD)恶化的巨大潜力。然而,有效地融合来自多模态神经影像的相关和互补信息是一个巨大的挑战。在这项工作中,提出了一种称为跨模态变换生成对抗网络(CT-GAN)的新模型,以有效地融合功能磁共振成像(fMRI)和弥散张量成像(DTI)中包含的功能和结构信息。CT-GAN 可以从多模态成像数据中以高效的端到端方式学习拓扑特征并生成多模态连接。此外,设计了交换双注意机制以逐渐对齐公共特征并有效地增强模态之间的互补特征。通过分析生成的连接特征,所提出的模型可以识别与 AD 相关的大脑连接。在公共 ADNI 数据集上的评估表明,所提出的 CT-GAN 可以显著提高预测性能并有效地检测与 AD 相关的大脑区域。该模型还为检测与 AD 相关的异常神经回路提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验