Suppr超能文献

基于多模态脑图像的长程状态空间模型实现阿尔茨海默病识别

Alzheimer's disease recognition via long-range state space model using multi-modal brain images.

作者信息

Ren Ziyin, Zhou Meng, Shakil Sadia, Tong Raymond Kai-Yu

机构信息

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.

出版信息

Front Neurosci. 2025 May 19;19:1576931. doi: 10.3389/fnins.2025.1576931. eCollection 2025.

Abstract

As a persistent neurodegenerative abnormality, Alzheimer's disease (AD) is affecting an increasing number of elderly people. The early identification of AD is critical for halting the disease progression at an early stage. However, the extraction and fusion of multi-modal features at different scales from brain images remains a challenge for effective AD recognition. In this work, a novel feature fusion long-range state space model (FF-LSSM) model is suggested for effective extraction and fusion of multi-level characteristics from scannings of MRI and PET. The FF-LSSM can extract whole-volume features at every scale and effectively decide their global dependencies via adopted 3D Mamba encoders. Moreover, a feature fusion block is employed to consolidate features of different levels extracted by each encoder to generate fused feature maps. A classifier is cascaded at the end, using the fused features to produce the predicted labels. The FF-LSSM model is optimized and evaluated using brain images of subjects from the ADNI dataset. The inference result on the testing set reveals the FF-LSSM accomplishes a classification ACC of 93.59% in CN vs. AD and 79.31% in sMCI vs. pMCI task, proving its effectiveness in disease classification. Finally, the introduction of the Grad-CAM method illustrates that the implied FF-LSSM can detect AD- and MCI-related brain regions effectively.

摘要

作为一种持续性神经退行性异常疾病,阿尔茨海默病(AD)正在影响着越来越多的老年人。AD的早期识别对于在疾病早期阶段阻止其进展至关重要。然而,从脑图像中提取和融合不同尺度的多模态特征仍然是有效识别AD的一项挑战。在这项工作中,提出了一种新颖的特征融合远程状态空间模型(FF-LSSM),用于从MRI和PET扫描中有效提取和融合多层次特征。FF-LSSM可以在每个尺度上提取全容积特征,并通过采用的3D曼巴编码器有效地确定它们的全局依赖性。此外,采用一个特征融合块来整合每个编码器提取的不同层次的特征,以生成融合特征图。最后级联一个分类器,使用融合特征来产生预测标签。使用来自ADNI数据集的受试者脑图像对FF-LSSM模型进行优化和评估。测试集上的推理结果表明,FF-LSSM在CN与AD分类任务中的准确率为93.59%,在sMCI与pMCI任务中的准确率为79.31%,证明了其在疾病分类中的有效性。最后,Grad-CAM方法的引入表明,隐含的FF-LSSM能够有效地检测与AD和MCI相关的脑区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b728/12127407/3e884357576a/fnins-19-1576931-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验