Suppr超能文献

基于多视图组学模型预测胶质母细胞瘤患者生活质量和生存情况的分子特征。

Molecular signature to predict quality of life and survival with glioblastoma using Multiview omics model.

机构信息

Center for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.

King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.

出版信息

PLoS One. 2023 Nov 16;18(11):e0287448. doi: 10.1371/journal.pone.0287448. eCollection 2023.

Abstract

Glioblastoma multiforme (GBM) patients show a variety of signs and symptoms that affect their quality of life (QOL) and self-dependence. Since most existing studies have examined prognostic factors based only on clinical factors, there is a need to consider the value of integrating multi-omics data including gene expression and proteomics with clinical data in identifying significant biomarkers for GBM prognosis. Our research aimed to isolate significant features that differentiate between short-term (≤ 6 months) and long-term (≥ 2 years) GBM survival, and between high Karnofsky performance scores (KPS ≥ 80) and low (KPS ≤ 60), using the iterative random forest (iRF) algorithm. Using the Cancer Genomic Atlas (TCGA) database, we identified 35 molecular features composed of 19 genes and 16 proteins. Our findings propose molecular signatures for predicting GBM prognosis and will improve clinical decisions, GBM management, and drug development.

摘要

多形性胶质母细胞瘤(GBM)患者表现出多种影响其生活质量(QOL)和自理能力的症状和体征。由于大多数现有研究仅基于临床因素来检查预后因素,因此需要考虑将基因表达和蛋白质组学等多组学数据与临床数据相结合,以确定用于 GBM 预后的有意义的生物标志物。我们的研究旨在使用迭代随机森林(iRF)算法分离可区分短期(≤6 个月)和长期(≥2 年)GBM 生存以及高卡诺夫斯基表现评分(KPS≥80)和低(KPS≤60)之间的显著特征。使用癌症基因组图谱(TCGA)数据库,我们确定了由 19 个基因和 16 个蛋白质组成的 35 个分子特征。我们的研究结果为预测 GBM 预后提出了分子特征,并将改善临床决策、GBM 管理和药物开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e3/10653472/b81e380dc369/pone.0287448.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验