Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.
Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
Nat Cancer. 2023 Feb;4(2):181-202. doi: 10.1038/s43018-022-00510-x. Epub 2023 Feb 2.
Despite producing a panoply of potential cancer-specific targets, the proteogenomic characterization of human tumors has yet to demonstrate value for precision cancer medicine. Integrative multi-omics using a machine-learning network identified master kinases responsible for effecting phenotypic hallmarks of functional glioblastoma subtypes. In subtype-matched patient-derived models, we validated PKCδ and DNA-PK as master kinases of glycolytic/plurimetabolic and proliferative/progenitor subtypes, respectively, and qualified the kinases as potent and actionable glioblastoma subtype-specific therapeutic targets. Glioblastoma subtypes were associated with clinical and radiomics features, orthogonally validated by proteomics, phospho-proteomics, metabolomics, lipidomics and acetylomics analyses, and recapitulated in pediatric glioma, breast and lung squamous cell carcinoma, including subtype specificity of PKCδ and DNA-PK activity. We developed a probabilistic classification tool that performs optimally with RNA from frozen and paraffin-embedded tissues, which can be used to evaluate the association of therapeutic response with glioblastoma subtypes and to inform patient selection in prospective clinical trials.
尽管产生了大量潜在的癌症特异性靶点,但人类肿瘤的蛋白质基因组学特征尚未证明对精准癌症医学有价值。使用机器学习网络进行的综合多组学分析确定了负责影响功能性胶质母细胞瘤亚型表型特征的主要激酶。在亚型匹配的患者来源模型中,我们验证了 PKCδ 和 DNA-PK 分别为糖酵解/多代谢和增殖/祖细胞亚型的主要激酶,并将这些激酶鉴定为有效的、可作用的胶质母细胞瘤亚型特异性治疗靶点。胶质母细胞瘤亚型与临床和放射组学特征相关,通过蛋白质组学、磷酸化蛋白质组学、代谢组学、脂质组学和乙酰化组学分析进行正交验证,并在儿科脑肿瘤、乳腺癌和肺鳞状细胞癌中得到重现,包括 PKCδ 和 DNA-PK 活性的亚型特异性。我们开发了一种概率分类工具,该工具在冷冻和石蜡包埋组织的 RNA 上表现最佳,可用于评估治疗反应与胶质母细胞瘤亚型的关联,并为前瞻性临床试验中的患者选择提供信息。