School of Medicine, Nankai University, Tianjin, China.
Wenzhou University of Technology, Wenzhou, Zhejiang, China.
Asia Pac J Ophthalmol (Phila). 2023;12(6):574-581. doi: 10.1097/APO.0000000000000644. Epub 2023 Nov 15.
This study aimed to develop a novel method to diagnose early keratoconus by detecting localized corneal biomechanical changes based on dynamic deformation videos using machine learning.
Diagnostic research study.
We included 917 corneal videos from the Tianjin Eye Hospital (Tianjin, China) and Shanxi Eye Hospital (Xi'an, China) from February 6, 2015, to August 25, 2022. Scheimpflug technology was used to obtain dynamic deformation videos under forced puffs of air. Fourteen new pixel-level biomechanical parameters were calculated based on a spline curve equation fitting by 115,200-pixel points from the corneal contour extracted from videos to characterize localized biomechanics. An ensemble learning model was developed, external validation was performed, and the diagnostic performance was compared with that of existing clinical diagnostic indices. The performance of the developed machine learning model was evaluated using precision, recall, F1 score, and the area under the receiver operating characteristic curve.
The ensemble learning model successfully diagnosed early keratoconus (area under the curve = 0.9997) with 95.73% precision, 95.61% recall, and 95.50% F1 score in the sample set (n=802). External validation on an independent dataset (n=115) achieved 91.38% precision, 92.11% recall, and 91.18% F1 score. Diagnostic accuracy was significantly better than that of existing clinical diagnostic indices (from 86.28% to 93.36%, all P <0.01).
Localized corneal biomechanical changes detected using dynamic deformation videos combined with machine learning algorithms were useful for diagnosing early keratoconus. Focusing on localized biomechanical changes may guide ophthalmologists, aiding the timely diagnosis of early keratoconus and benefiting the patient's vision.
本研究旨在通过使用机器学习基于动态变形视频检测局部角膜生物力学变化,开发一种诊断早期圆锥角膜的新方法。
诊断研究。
我们纳入了 2015 年 2 月 6 日至 2022 年 8 月 25 日期间来自中国天津眼科医院和山西眼科医院的 917 例角膜视频。采用 Scheimpflug 技术在强制空气吹拂下获得动态变形视频。基于从视频中提取的角膜轮廓的 115200 个像素点,通过样条曲线方程拟合计算了 14 个新的像素级生物力学参数,以描述局部生物力学。开发了一个集成学习模型,进行了外部验证,并比较了该诊断性能与现有临床诊断指标的差异。使用精度、召回率、F1 评分和受试者工作特征曲线下面积评估所开发的机器学习模型的性能。
该集成学习模型在样本集(n=802)中成功诊断早期圆锥角膜(曲线下面积=0.9997),具有 95.73%的精度、95.61%的召回率和 95.50%的 F1 评分。在独立数据集(n=115)上的外部验证中,实现了 91.38%的精度、92.11%的召回率和 91.18%的 F1 评分。诊断准确性明显优于现有临床诊断指标(从 86.28%到 93.36%,均 P<0.01)。
使用动态变形视频结合机器学习算法检测局部角膜生物力学变化对诊断早期圆锥角膜具有重要意义。关注局部生物力学变化可能有助于眼科医生及时诊断早期圆锥角膜,保护患者的视力。