Biostatistics, GlaxoSmithKline R&D, London, UK.
Pharm Stat. 2024 May-Jun;23(3):308-324. doi: 10.1002/pst.2350. Epub 2023 Nov 16.
There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.
人们越来越感兴趣地将体力活动数据用于临床研究,特别是在限制患者活动能力的疾病中。使用数字传感器收集的高频数据通常汇总为以时段(例如,按分钟)为单位的活动记录仪特征。对如此大量的数据进行统计分析并不简单。通常的趋势是得出指标,这些指标捕捉体力活动的特定方面,将(比如说)一周的数据浓缩为单个数值。在这里,我们建议使用广义加性模型(GAMs)来分析整个时间序列数据。GAMs 是半参数模型,允许在线性预测器中包含参数和非参数项。后者是平滑项(例如,样条),在活动记录仪分钟级数据分析的上下文中,它们可用于评估体力活动的日常模式。这反过来又可用于更好地了解纵向研究中随时间的变化,以及比较治疗组。我们在两项使用活动记录仪数据的临床研究中说明了 GAMs 的应用:一项针对肌萎缩侧索硬化症患者的非药物单臂研究,以及一项包括在慢性阻塞性肺疾病 2b 期临床试验中的体力活动子研究。