Suppr超能文献

利用窦性心律心电图识别不明来源栓塞性卒中患者的心房颤动:一项可植入式心脏监测器的验证研究

Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors.

作者信息

Jeon Ki-Hyun, Jang Jong-Hwan, Kang Sora, Lee Hak Seung, Lee Min Sung, Son Jeong Min, Jo Yong-Yeon, Park Tae Jun, Oh Il-Young, Kwon Joon-Myoung, Lee Ji Hyun

机构信息

Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.

Medical Research Team, Medical AI Inc., San Francisco, CA, USA.

出版信息

Korean Circ J. 2023 Nov;53(11):758-771. doi: 10.4070/kcj.2023.0009.

Abstract

BACKGROUND AND OBJECTIVES

Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients.

METHODS

A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF.

RESULTS

A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906.

CONCLUSIONS

The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

摘要

背景与目的

阵发性心房颤动(AF)是不明来源栓塞性卒中(ESUS)的一个主要潜在病因。然而,由于AF发作具有偶发性,因此识别AF仍然具有挑战性。深度学习可用于基于窦性心律(SR)心电图(ECG)识别隐匿性AF。我们结合已知的AF危险因素,开发了一种用于预测AF的深度学习算法(DLA),以优化ESUS患者的诊断性能。

方法

利用AF患者和非AF患者的数据库,开发了一种使用SR 12导联ECG识别AF的DLA。在221例接受植入式心脏监测器(ICM)植入以识别AF的ESUS患者中验证了DLA的准确性。

结果

共使用了来自12,666例患者的44,085份ECG来开发DLA。DLA的内部验证显示,在受试者工作曲线分析中,曲线下面积(AUC)为0.862(95%置信区间,0.850 - 0.873)。在来自221例ESUS患者的外部验证数据中,DLA的诊断准确性和AUC分别为0.811和0.827,并且DLA的表现优于包括CHARGE - AF、C2HEST和HATCH在内的传统预测模型。由房性异位负荷、左心房直径和DLA组成的联合模型在AF预测中表现出色,AUC为0.906。

结论

DLA使用ESUS患者的12导联SR ECG准确识别阵发性AF,并且表现优于传统模型。DLA模型与传统AF危险因素相结合可能是识别ESUS患者阵发性AF的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e972/10654409/9e42e814141f/kcj-53-758-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验