School of Mathematical Sciences, Fudan University, No. 220 Handan Road, Shanghai, 200433, Shanghai, China.
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, No. 220 Handan Road, Shanghai, 200433, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, No. 220 Handan Road, Shanghai, 200433, Shanghai, China.
Neural Netw. 2024 Mar;171:293-307. doi: 10.1016/j.neunet.2023.11.016. Epub 2023 Nov 11.
When handling real-world data modeled by a complex network dynamical system, the number of the parameters is often much more than the size of the data. Therefore, in many cases, it is impossible to estimate these parameters and the exact value of each parameter is frequently less interesting than the distribution of the parameters. In this paper, we aim to estimate the distribution of the parameters in the mesoscopic neuronal network model from the macroscopic experimental data, for example, the BOLD (blood oxygen level dependent) signal. Herein, we assume that the parameters of the neurons and synapses are inhomogeneous but independently and identically distributed from certain distributions with unknown hyperparameters. Thus, we estimate these hyperparameters of the distributions of the parameters, instead of estimating the parameters themselves. We formulate this problem under the framework of data assimilation and hierarchical Bayesian method and present an efficient method named Hierarchical Data Assimilation (HDA) to conduct the statistical inference on the neuronal network model with the BOLD signal data simulated by the hemodynamic model. We consider the Leaky Integral-Fire (LIF) neuronal networks with four synapses and show that the proposed algorithm can estimate the BOLD signals and the hyperparameters with high preciseness. In addition, we discuss the influence on the performance of the algorithm configuration and the LIF network model setup.
当处理由复杂网络动力系统建模的真实世界数据时,参数的数量通常远远超过数据的大小。因此,在许多情况下,不可能估计这些参数,并且每个参数的确切值通常不如参数的分布有趣。在本文中,我们旨在从宏观实验数据(例如 BOLD(血氧水平依赖性)信号)中估计介观神经元网络模型中的参数分布。在此,我们假设神经元和突触的参数是不均匀的,但从具有未知超参数的某些分布中独立且同分布。因此,我们估计这些参数分布的超参数,而不是估计参数本身。我们在数据同化和分层贝叶斯方法的框架下对此问题进行了描述,并提出了一种名为分层数据同化(HDA)的有效方法,用于对由血流动力学模型模拟的 BOLD 信号数据的神经元网络模型进行统计推断。我们考虑具有四个突触的 Leaky Integral-Fire(LIF)神经元网络,并表明所提出的算法可以高精度地估计 BOLD 信号和超参数。此外,我们讨论了算法配置和 LIF 网络模型设置对性能的影响。