Suppr超能文献

基于稀疏放电数据评估神经元集合功能连接的统计推断。

Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data.

机构信息

Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):121-35. doi: 10.1109/TNSRE.2010.2086079. Epub 2010 Oct 11.

Abstract

The ability to accurately infer functional connectivity between ensemble neurons using experimentally acquired spike train data is currently an important research objective in computational neuroscience. Point process generalized linear models and maximum likelihood estimation have been proposed as effective methods for the identification of spiking dependency between neurons. However, unfavorable experimental conditions occasionally results in insufficient data collection due to factors such as low neuronal firing rates or brief recording periods, and in these cases, the standard maximum likelihood estimate becomes unreliable. The present studies compares the performance of different statistical inference procedures when applied to the estimation of functional connectivity in neuronal assemblies with sparse spiking data. Four inference methods were compared: maximum likelihood estimation, penalized maximum likelihood estimation, using either l(2) or l(1) regularization, and hierarchical Bayesian estimation based on a variational Bayes algorithm. Algorithmic performances were compared using well-established goodness-of-fit measures in benchmark simulation studies, and the hierarchical Bayesian approach performed favorably when compared with the other algorithms, and this approach was then successfully applied to real spiking data recorded from the cat motor cortex. The identification of spiking dependencies in physiologically acquired data was encouraging, since their sparse nature would have previously precluded them from successful analysis using traditional methods.

摘要

使用实验获得的尖峰火车数据准确推断集合神经元之间的功能连接的能力目前是计算神经科学的一个重要研究目标。点过程广义线性模型和最大似然估计已被提出作为识别神经元之间的尖峰依赖性的有效方法。然而,不利的实验条件偶尔会由于神经元发射率低或记录时间短等因素导致数据采集不足,在这种情况下,标准的最大似然估计变得不可靠。本研究比较了不同统计推断方法在稀疏尖峰数据的神经元集合功能连接估计中的性能。比较了四种推断方法:最大似然估计、惩罚最大似然估计、使用 l(2)或 l(1)正则化,以及基于变分贝叶斯算法的分层贝叶斯估计。在基准模拟研究中使用成熟的拟合优度度量标准比较算法性能,分层贝叶斯方法的性能优于其他算法,然后成功地将其应用于从猫运动皮层记录的真实尖峰数据。生理获得的数据中尖峰依赖性的识别令人鼓舞,因为它们的稀疏性质以前会阻止它们使用传统方法进行成功的分析。

相似文献

1
Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data.
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):121-35. doi: 10.1109/TNSRE.2010.2086079. Epub 2010 Oct 11.
2
Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions.
J Comput Neurosci. 2013 Dec;35(3):335-57. doi: 10.1007/s10827-013-0455-7. Epub 2013 May 15.
4
Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
J Neurosci Methods. 2019 Jan 15;312:169-181. doi: 10.1016/j.jneumeth.2018.11.013. Epub 2018 Nov 27.
5
Empirical Bayesian significance measure of neuronal spike response.
BMC Neurosci. 2016 May 21;17(1):27. doi: 10.1186/s12868-016-0255-x.
6
Neural Correlation Integrated Adaptive Point Process Filtering on Population Spike Trains.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:1014-1025. doi: 10.1109/TNSRE.2025.3545206. Epub 2025 Mar 6.
7
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
Neural Comput. 2005 Sep;17(9):1927-61. doi: 10.1162/0899766054322973.
8
An overview of Bayesian methods for neural spike train analysis.
Comput Intell Neurosci. 2013;2013:251905. doi: 10.1155/2013/251905. Epub 2013 Nov 17.
9
Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS).
PLoS One. 2018 Nov 21;13(11):e0206794. doi: 10.1371/journal.pone.0206794. eCollection 2018.
10
Assessing neuronal interactions of cell assemblies during general anesthesia.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4175-8. doi: 10.1109/IEMBS.2011.6091036.

引用本文的文献

1
Maximum likelihood estimation of spatially dependent interactions in large populations of cortical neurons.
Front Comput Neurosci. 2025 Aug 13;19:1639829. doi: 10.3389/fncom.2025.1639829. eCollection 2025.
2
Nondifferentiable activity in the brain.
PNAS Nexus. 2024 Jul 1;3(7):pgae261. doi: 10.1093/pnasnexus/pgae261. eCollection 2024 Jul.
3
A convolutional neural network for estimating synaptic connectivity from spike trains.
Sci Rep. 2021 Jun 8;11(1):12087. doi: 10.1038/s41598-021-91244-w.
4
Inferring thalamocortical monosynaptic connectivity in vivo.
J Neurophysiol. 2021 Jun 1;125(6):2408-2431. doi: 10.1152/jn.00591.2020. Epub 2021 May 12.
5
Reconstructing neuronal circuitry from parallel spike trains.
Nat Commun. 2019 Oct 2;10(1):4468. doi: 10.1038/s41467-019-12225-2.
6
A common goodness-of-fit framework for neural population models using marked point process time-rescaling.
J Comput Neurosci. 2018 Oct;45(2):147-162. doi: 10.1007/s10827-018-0698-4. Epub 2018 Oct 8.
7
Systems approaches to optimizing deep brain stimulation therapies in Parkinson's disease.
Wiley Interdiscip Rev Syst Biol Med. 2018 Sep;10(5):e1421. doi: 10.1002/wsbm.1421. Epub 2018 Mar 20.
8
Modeling task-specific neuronal ensembles improves decoding of grasp.
J Neural Eng. 2018 Jun;15(3):036006. doi: 10.1088/1741-2552/aaac93. Epub 2018 Feb 2.
9
From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.
J Physiol Paris. 2016 Nov;110(4 Pt A):336-347. doi: 10.1016/j.jphysparis.2017.02.004. Epub 2017 May 25.
10
On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.
PLoS Comput Biol. 2017 Feb 24;13(2):e1005390. doi: 10.1371/journal.pcbi.1005390. eCollection 2017 Feb.

本文引用的文献

2
Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes.
Nat Neurosci. 2010 Jan;13(1):105-11. doi: 10.1038/nn.2455. Epub 2009 Dec 6.
3
A regularized point process generalized linear model for assessing the functional connectivity in the cat motor cortex.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5006-9. doi: 10.1109/IEMBS.2009.5334610.
7
Bayesian inference of functional connectivity and network structure from spikes.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):203-13. doi: 10.1109/TNSRE.2008.2010471. Epub 2008 Dec 9.
8
Inferring functional connections between neurons.
Curr Opin Neurobiol. 2008 Dec;18(6):582-8. doi: 10.1016/j.conb.2008.11.005. Epub 2008 Dec 8.
9
Analysis of between-trial and within-trial neural spiking dynamics.
J Neurophysiol. 2008 May;99(5):2672-93. doi: 10.1152/jn.00343.2007. Epub 2008 Jan 23.
10
Nonparametric modeling of neural point processes via stochastic gradient boosting regression.
Neural Comput. 2007 Mar;19(3):672-705. doi: 10.1162/neco.2007.19.3.672.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验