Suppr超能文献

使用深度生成模型进行无对照样本的 N-of-one 差异基因表达分析。

N-of-one differential gene expression without control samples using a deep generative model.

机构信息

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.

Center for Health Data Science, University of Copenhagen, Copenhagen, Denmark.

出版信息

Genome Biol. 2023 Nov 16;24(1):263. doi: 10.1186/s13059-023-03104-7.

Abstract

Differential analysis of bulk RNA-seq data often suffers from lack of good controls. Here, we present a generative model that replaces controls, trained solely on healthy tissues. The unsupervised model learns a low-dimensional representation and can identify the closest normal representation for a given disease sample. This enables control-free, single-sample differential expression analysis. In breast cancer, we demonstrate how our approach selects marker genes and outperforms a state-of-the-art method. Furthermore, significant genes identified by the model are enriched in driver genes across cancers. Our results show that the in silico closest normal provides a more favorable comparison than control samples.

摘要

批量 RNA-seq 数据的差异分析通常受到缺乏良好对照的困扰。在这里,我们提出了一种生成模型,该模型仅在健康组织上进行训练,从而替代对照。无监督模型学习低维表示,并且可以为给定的疾病样本识别最接近的正常表示。这使得无需对照即可进行单个样本差异表达分析。在乳腺癌中,我们展示了我们的方法如何选择标记基因,并优于最先进的方法。此外,该模型鉴定的显著基因在多种癌症中富集了驱动基因。我们的结果表明,与对照样本相比,基于计算的最近的正常样本提供了更有利的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523f/10655485/12aa4f4ac2c1/13059_2023_3104_Fig1_HTML.jpg

相似文献

1
N-of-one differential gene expression without control samples using a deep generative model.
Genome Biol. 2023 Nov 16;24(1):263. doi: 10.1186/s13059-023-03104-7.
2
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
RNA. 2020 Oct;26(10):1303-1319. doi: 10.1261/rna.074427.119. Epub 2020 Jun 12.
3
Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
Comput Biol Med. 2024 Feb;169:107828. doi: 10.1016/j.compbiomed.2023.107828. Epub 2023 Dec 7.
4
Unsupervised generative and graph representation learning for modelling cell differentiation.
Sci Rep. 2020 Jun 17;10(1):9790. doi: 10.1038/s41598-020-66166-8.
6
7
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data.
Sci Rep. 2021 Jan 29;11(1):2641. doi: 10.1038/s41598-021-81773-9.
10
Novel deep generative simultaneous recurrent model for efficient representation learning.
Neural Netw. 2018 Nov;107:12-22. doi: 10.1016/j.neunet.2018.04.020. Epub 2018 Aug 9.

本文引用的文献

1
2
SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses.
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):912-927. doi: 10.1016/j.gpb.2022.09.011. Epub 2022 Oct 7.
3
Individual Genetic Heterogeneity.
Genes (Basel). 2022 Sep 10;13(9):1626. doi: 10.3390/genes13091626.
4
An evaluation of RNA-seq differential analysis methods.
PLoS One. 2022 Sep 16;17(9):e0264246. doi: 10.1371/journal.pone.0264246. eCollection 2022.
5
Molecular analysis of TCGA breast cancer histologic types.
Cell Genom. 2021 Dec 8;1(3). doi: 10.1016/j.xgen.2021.100067.
7
recount3: summaries and queries for large-scale RNA-seq expression and splicing.
Genome Biol. 2021 Nov 29;22(1):323. doi: 10.1186/s13059-021-02533-6.
9
From bulk, single-cell to spatial RNA sequencing.
Int J Oral Sci. 2021 Nov 15;13(1):36. doi: 10.1038/s41368-021-00146-0.
10
High heterogeneity undermines generalization of differential expression results in RNA-Seq analysis.
Hum Genomics. 2021 Jan 28;15(1):7. doi: 10.1186/s40246-021-00308-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验