Suppr超能文献

一种用于单细胞 RNA 测序分析中降维的深度对抗变分自动编码器模型。

A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.

机构信息

Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA.

Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.

出版信息

BMC Bioinformatics. 2020 Feb 21;21(1):64. doi: 10.1186/s12859-020-3401-5.

Abstract

BACKGROUND

Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements).

RESULTS

To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data.

CONCLUSIONS

Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.

摘要

背景

单细胞 RNA 测序(scRNA-seq)是一种新兴技术,可以在单细胞水平上以无偏倚的方式评估单个细胞的功能和细胞间的可变性。降维是 scRNA-seq 数据分析下游的重要第一步。然而,由于其高维测量以及大量的缺失事件(即零表达测量),传统方法在处理 scRNA-seq 数据时面临挑战。

结果

为了克服这些困难,我们提出了 DR-A(基于对抗变分自动编码器的降维),这是一种用于完成降维任务的数据驱动方法。DR-A 利用了一种新颖的基于对抗变分自动编码器的框架,即生成对抗网络的变体。DR-A 非常适合用于 scRNA-seq 数据的无监督学习任务,在这些任务中,细胞类型的标签代价高昂,并且通常难以获得。与现有方法相比,DR-A 能够更准确地对 scRNA-seq 数据进行低维表示。我们通过利用 DR-A 对 scRNA-seq 数据进行聚类来说明这一点。

结论

我们的结果表明,DR-A 显著提高了聚类性能,优于最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/7035735/74eaadcccc80/12859_2020_3401_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验