文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在1.5T条件下,利用基于深度学习的高分辨率扩散加权成像优化乳腺癌患者的图像质量

Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T.

作者信息

Olthof Susann-Cathrin, Weiland Elisabeth, Benkert Thomas, Wessling Daniel, Leyhr Daniel, Afat Saif, Nikolaou Konstantin, Preibsch Heike

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.

MR Application Predevelopment, Siemens Healthineers AG, 91052 Erlangen, Germany.

出版信息

Diagnostics (Basel). 2024 Aug 10;14(16):1742. doi: 10.3390/diagnostics14161742.


DOI:10.3390/diagnostics14161742
PMID:39202230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11353399/
Abstract

The objective of this study was to evaluate a high-resolution deep-learning (DL)-based diffusion-weighted imaging (DWI) sequence for breast magnetic resonance imaging (MRI) in comparison to a standard DWI sequence (DWI) at 1.5 T. It is a prospective study of 38 breast cancer patients, who were scanned with DWI and DWI. Both DWI sequences were scored for image quality, sharpness, artifacts, contrast, noise, and diagnostic confidence with a Likert-scale from 1 (non-diagnostic) to 5 (excellent). The lesion diameter was evaluated on b 800 DWI, apparent diffusion coefficient (ADC), and the second subtraction (SUB) of the contrast-enhanced T1 VIBE. SNR was also calculated. Statistics included correlation analyses and paired -tests. High-resolution DWI offered significantly superior image quality, sharpness, noise, contrast, and diagnostic confidence (each < 0.02)). Artifacts were significantly higher in DWI by one reader (M = 4.62 vs. 4.36 Likert scale, < 0.01) without affecting the diagnostic confidence. SNR was higher in DWI for b 50 and ADC maps (each = 0.07). Acquisition time was reduced by 22% in DWI. The lesion diameters in DWI b 800 and and ADC and were respectively 6% lower compared to the 2nd SUB. A DL-based diffusion sequence at 1.5 T in breast MRI offers a higher resolution and a faster acquisition, including only minimally more artefacts without affecting the diagnostic confidence.

摘要

本研究的目的是评估一种基于高分辨率深度学习(DL)的扩散加权成像(DWI)序列用于1.5T乳腺磁共振成像(MRI),并与标准DWI序列(DWI)进行比较。这是一项对38例乳腺癌患者的前瞻性研究,这些患者接受了DWI和DWI扫描。对两个DWI序列的图像质量、清晰度、伪影、对比度、噪声和诊断置信度进行评分,采用李克特量表,从1(非诊断性)到5(优秀)。在b 800 DWI、表观扩散系数(ADC)和对比增强T1 VIBE的第二次减法(SUB)上评估病变直径。还计算了信噪比。统计分析包括相关性分析和配对检验。高分辨率DWI在图像质量、清晰度、噪声、对比度和诊断置信度方面具有显著优势(均P<0.02)。一位读者认为DWI中的伪影明显更高(李克特量表:M = 4.62对4.36,P<0.01),但不影响诊断置信度。在b 50和ADC图中,DWI的信噪比更高(均P = 0.07)。DWI的采集时间减少了22%。与第二次SUB相比,DWI b 800中的病变直径以及ADC和分别降低了6%。1.5T乳腺MRI中基于DL的扩散序列提供了更高的分辨率和更快的采集速度,仅产生略微更多的伪影,且不影响诊断置信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/4cba019931a5/diagnostics-14-01742-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/f0a1e46ec0d5/diagnostics-14-01742-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/601a04e0d65f/diagnostics-14-01742-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/4cba019931a5/diagnostics-14-01742-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/f0a1e46ec0d5/diagnostics-14-01742-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/601a04e0d65f/diagnostics-14-01742-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedc/11353399/4cba019931a5/diagnostics-14-01742-g003.jpg

相似文献

[1]
Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T.

Diagnostics (Basel). 2024-8-10

[2]
Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.

Eur J Radiol. 2023-9

[3]
Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.

Acad Radiol. 2024-3

[4]
Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.

Diagn Interv Imaging. 2023-4

[5]
Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study.

Invest Radiol. 2023-12-1

[6]
Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.

Acad Radiol. 2023-5

[7]
Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.

J Magn Reson Imaging. 2024-9

[8]
Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.

Abdom Radiol (NY). 2024-5

[9]
Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value.

Eur J Radiol. 2023-11

[10]
High-resolution diffusion-weighted imaging compared with conventional diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging with regard to image quality and assessment of breast cancer morphology.

Diagn Interv Radiol. 2023-3-29

引用本文的文献

[1]
Multidimensional evaluation of 3.0T HR-MRI, ultrasound imaging, and GATA3 protein expression in breast cancer, and their prognostic analysis.

Front Oncol. 2025-8-13

本文引用的文献

[1]
Fast 5-minute shoulder MRI protocol with accelerated TSE-sequences and deep learning image reconstruction for the assessment of shoulder pain at 1.5 and 3 Tesla.

Eur J Radiol Open. 2024-3-8

[2]
Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.

J Magn Reson Imaging. 2024-9

[3]
Ten years of gadolinium retention and deposition: ESMRMB-GREC looks backward and forward.

Eur Radiol. 2024-1

[4]
Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.

Eur J Radiol. 2023-9

[5]
Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study.

Invest Radiol. 2023-12-1

[6]
Clinical Impact of Deep Learning Reconstruction in MRI.

Radiographics. 2023-6

[7]
Technical Advancements in Abdominal Diffusion-weighted Imaging.

Magn Reson Med Sci. 2023-4-1

[8]
Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction.

Cancers (Basel). 2023-1-18

[9]
Breast MRI: Clinical Indications, Recommendations, and Future Applications in Breast Cancer Diagnosis.

Curr Oncol Rep. 2023-4

[10]
Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time.

Diagn Interv Imaging. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索