Suppr超能文献

正电子发射断层扫描(PET)神经影像学中的主成分分析和逻辑回归作为阿尔茨海默病的一种可解释和诊断工具。

PCA and logistic regression in 2-[F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer's disease.

机构信息

Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil.

Centro de Diagnóstico por Imagem, Goiânia, Goiás, Brazil.

出版信息

Phys Med Biol. 2024 Jan 4;69(2). doi: 10.1088/1361-6560/ad0ddd.

Abstract

to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer's disease (AD).as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI).the best combination of hyperparameters was L1 regularization and≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD.our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.

摘要

为了开发一个基于主成分分析和逻辑回归的分类模型的优化和训练管道,使用来自正电子发射断层扫描(PET)的 2-[F]氟-2-脱氧-D-葡萄糖(FDG PET)的神经图像来诊断阿尔茨海默病(AD)。作为训练数据,使用了 200 个 FDG PET 神经图像,其中 100 个来自 AD 患者组,100 个来自认知正常组(CN),从阿尔茨海默病神经影像学倡议(ADNI)的存储库中下载。测试了正则化方法 L1 和 L2,并通过超参数 C 改变它们各自的强度。一旦确定了最佳的超参数组合,就用于训练最终的分类模型,然后将其应用于测试数据,包括 192 个 FDG PET 神经图像,其中 100 个来自没有 AD 证据的受试者(nAD),92 个来自 AD 组,在 Centro de Diagnóstico por Imagem(CDI)获得。最佳的超参数组合是 L1 正则化和≈0.316。在测试数据上的最终结果是准确性=88.54%,召回率=90.22%,精度=86.46%和 AUC=94.75%,表明对训练集之外的神经图像有很好的泛化能力。通过各自的权重调整每个主成分,得到一个可解释的图像,该图像表示在高体素强度下 AD 的可能性较大或较小的区域。得到的图像与 AD 的病理生理学相符。我们的分类模型是在公开可用且稳健的数据上进行训练的,并在临床常规数据上进行了测试,结果良好。我们的研究表明,它是一种强大且可解释的工具,可以在拥有 FDG PET 神经图像的情况下协助 AD 的诊断。在未来的研究中,应该探索分类模型输出分数与 AD 进展之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验