使用可解释的深度学习放射组学模型诊断和预测早期阿尔茨海默病疾病谱的进展:一项初步的[F]FDG PET研究。
Using interpretable deep learning radiomics model to diagnose and predict progression of early AD disease spectrum: a preliminary [F]FDG PET study.
作者信息
Jiang Jiehui, Li Chenyang, Lu Jiaying, Sun Jie, Sun Xiaoming, Yang Jiacheng, Wang Luyao, Zuo Chuantao, Shi Kuangyu
机构信息
Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China.
Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.
出版信息
Eur Radiol. 2025 May;35(5):2620-2633. doi: 10.1007/s00330-024-11158-9. Epub 2024 Oct 31.
OBJECTIVES
In this study, we propose an interpretable deep learning radiomics (IDLR) model based on [F]FDG PET images to diagnose the clinical spectrum of Alzheimer's disease (AD) and predict the progression from mild cognitive impairment (MCI) to AD.
METHODS
This multicentre study included 1962 subjects from two ethnically diverse, independent cohorts (a Caucasian cohort from ADNI and an Asian cohort merged from two hospitals in China). The IDLR model involved feature extraction, feature selection, and classification/prediction. We evaluated the IDLR model's ability to distinguish between subjects with different cognitive statuses and MCI trajectories (sMCI and pMCI) and compared results with radiomic and deep learning (DL) models. A Cox model tested the IDLR signature's predictive capability for MCI to AD progression. Correlation analyses identified critical IDLR features and verified their clinical diagnostic value.
RESULTS
The IDLR model achieved the best classification results for subjects with different cognitive statuses as well as in those with MCI with distinct trajectories, with an accuracy of 76.51% [72.88%, 79.60%], (95% confidence interval, CI) while those of radiomic and DL models were 69.13% [66.28%, 73.12%] and 73.89% [68.99%, 77.89%], respectively. According to the Cox model, the hazard ratio (HR) of the IDLR model was 1.465 (95% CI: 1.236-1.737, p < 0.001). Moreover, three crucial IDLR features were significantly different across cognitive stages and were significantly correlated with cognitive scale scores (p < 0.01).
CONCLUSIONS
Preliminary results demonstrated that the IDLR model based on [F]FDG PET images enhanced accuracy in diagnosing the clinical spectrum of AD.
KEY POINTS
Question The study addresses the lack of interpretability in existing DL classification models for diagnosing the AD spectrum. Findings The proposed interpretable DL radiomics model, using radiomics-supervised DL features, enhances interpretability from traditional DL models and improves classification accuracy. Clinical relevance The IDLR model interprets DL features through radiomics supervision, potentially advancing the application of DL in clinical classification tasks.
目的
在本研究中,我们基于[F]FDG PET图像提出一种可解释的深度学习放射组学(IDLR)模型,以诊断阿尔茨海默病(AD)的临床谱,并预测从轻度认知障碍(MCI)到AD的进展。
方法
这项多中心研究纳入了来自两个种族不同的独立队列的1962名受试者(一个来自ADNI的白种人队列和一个由中国两家医院合并的亚洲队列)。IDLR模型包括特征提取、特征选择和分类/预测。我们评估了IDLR模型区分不同认知状态和MCI轨迹(稳定型MCI和进展型MCI)受试者的能力,并将结果与放射组学和深度学习(DL)模型进行比较。Cox模型测试了IDLR特征对MCI向AD进展的预测能力。相关性分析确定了关键的IDLR特征,并验证了它们的临床诊断价值。
结果
IDLR模型在区分不同认知状态的受试者以及具有不同轨迹的MCI受试者方面取得了最佳分类结果,准确率为76.51%[72.88%,79.60%],(95%置信区间,CI),而放射组学和DL模型的准确率分别为69.13%[66.28%,73.12%]和73.89%[68.99%,77.89%]。根据Cox模型,IDLR模型的风险比(HR)为1.465(95%CI:1.236 - 1.737,p < 0.001)。此外,三个关键的IDLR特征在不同认知阶段有显著差异,并且与认知量表评分显著相关(p < 0.01)。
结论
初步结果表明,基于[F]FDG PET图像的IDLR模型提高了AD临床谱诊断的准确性。
关键点
问题 该研究解决了现有用于诊断AD谱的DL分类模型缺乏可解释性的问题。发现 所提出的可解释DL放射组学模型,使用放射组学监督的DL特征,增强了传统DL模型的可解释性并提高了分类准确性。临床相关性 IDLR模型通过放射组学监督解释DL特征,可能推动DL在临床分类任务中的应用。