Shen Kangqing, Vivone Gemine, Yang Xiaoyuan, Lolli Simone, Schmitt Michael
School of Mathematical Sciences, Beihang University, Beijing, 102206, China.
Institute of Methodologies for Environmental Analysis, CNR-IMAA, Tito Scalo, 85050, Italy; National Biodiversity Future Center, NBFC, Palermo, 90133, Italy.
Neural Netw. 2024 Jan;169:698-712. doi: 10.1016/j.neunet.2023.10.058. Epub 2023 Nov 8.
Synthetic aperture radar (SAR) images are widely used in remote sensing. Interpreting SAR images can be challenging due to their intrinsic speckle noise and grayscale nature. To address this issue, SAR colorization has emerged as a research direction to colorize gray scale SAR images while preserving the original spatial information and radiometric information. However, this research field is still in its early stages, and many limitations can be highlighted. In this paper, we propose a full research line for supervised learning-based approaches to SAR colorization. Our approach includes a protocol for generating synthetic color SAR images, several baselines, and an effective method based on the conditional generative adversarial network (cGAN) for SAR colorization. We also propose numerical assessment metrics for the problem at hand. To our knowledge, this is the first attempt to propose a research line for SAR colorization that includes a protocol, a benchmark, and a complete performance evaluation. Our extensive tests demonstrate the effectiveness of our proposed cGAN-based network for SAR colorization. The code is available at https://github.com/shenkqtx/SAR-Colorization-Benchmarking-Protocol.
合成孔径雷达(SAR)图像在遥感中被广泛应用。由于其固有的斑点噪声和灰度特性,解读SAR图像具有挑战性。为了解决这个问题,SAR图像彩色化已成为一个研究方向,旨在对灰度SAR图像进行彩色化处理,同时保留原始的空间信息和辐射信息。然而,这个研究领域仍处于早期阶段,存在许多局限性。在本文中,我们提出了一条基于监督学习的SAR图像彩色化方法的完整研究路线。我们的方法包括一个生成合成彩色SAR图像的协议、几个基线,以及一种基于条件生成对抗网络(cGAN)的有效SAR图像彩色化方法。我们还针对手头的问题提出了数值评估指标。据我们所知,这是首次尝试提出一条包括协议、基准和完整性能评估的SAR图像彩色化研究路线。我们的广泛测试证明了我们提出的基于cGAN的网络用于SAR图像彩色化的有效性。代码可在https://github.com/shenkqtx/SAR-Colorization-Benchmarking-Protocol获取。