Suppr超能文献

基于特征增强的合成孔径雷达遥感图像分割

SAR remote sensing image segmentation based on feature enhancement.

作者信息

Wei Wei, Ye Yanyu, Chen Guochao, Zhao Yuming, Yang Xin, Zhang Lei, Zhang Yanning

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.

出版信息

Neural Netw. 2025 May;185:107190. doi: 10.1016/j.neunet.2025.107190. Epub 2025 Jan 23.

Abstract

Synthetic aperture radar (SAR) images are crucial in remote sensing due to their ability to capture high-quality images regardless of environmental conditions. Though it has been studied for years, the following aspects still limit its further improvement. (1) Due to the unique imaging mechanism of SAR images, the influence of speckle noise cannot be avoided. (2) High-resolution SAR remote sensing images contain complex surface features, and the intersection of multiple targets makes boundary information unclear. To address these problems, we propose a SAR remote sensing image segmentation method based on feature enhancement. Specifically, we propose utilizing wavelet transform on the original SAR remote sensing image along with an encoder-decoder network to learn the structural features. This approach enhances the feature expression and mitigates the impact of speckle noise. Secondly, we design a post-processing refinement module that consists of a small cascaded encoder-decoder. This module refines the segmentation results, making the boundary information clearer. Finally, to further enhance the segmentation results, we incorporate a self-distillation module into the encoder. This enhances hierarchical interaction in the encoder, enabling better learning of semantic information by the shallow layer for segmentation. Two SAR image segmentation datasets demonstrate the effectiveness of the proposed method.

摘要

合成孔径雷达(SAR)图像在遥感中至关重要,因为它能够在任何环境条件下获取高质量图像。尽管已经研究多年,但以下几个方面仍限制其进一步改进。(1)由于SAR图像独特的成像机制,斑点噪声的影响无法避免。(2)高分辨率SAR遥感图像包含复杂的地表特征,多个目标的交叉使得边界信息不清晰。为了解决这些问题,我们提出一种基于特征增强的SAR遥感图像分割方法。具体而言,我们建议对原始SAR遥感图像进行小波变换,并结合编码器-解码器网络来学习结构特征。这种方法增强了特征表达并减轻了斑点噪声的影响。其次,我们设计了一个后处理细化模块,它由一个小型级联编码器-解码器组成。该模块细化分割结果,使边界信息更清晰。最后,为了进一步增强分割结果,我们将自蒸馏模块融入编码器。这增强了编码器中的分层交互,使浅层能够更好地学习语义信息以进行分割。两个SAR图像分割数据集证明了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验