Suppr超能文献

卷积神经网络的语义图像分割中的滤波器剪枝。

Filter pruning for convolutional neural networks in semantic image segmentation.

机构信息

Department of Software Engineering and Artificial Intelligence, Complutense University of Madrid, Madrid, 28040, Spain.

Department of Computer Architecture and Automation, Complutense University of Madrid, Madrid, 28040, Spain.

出版信息

Neural Netw. 2024 Jan;169:713-732. doi: 10.1016/j.neunet.2023.11.010. Epub 2023 Nov 7.

Abstract

The remarkable performance of Convolutional Neural Networks (CNNs) has increased their use in real-time systems and devices with limited resources. Hence, compacting these networks while preserving accuracy has become necessary, leading to multiple compression methods. However, the majority require intensive iterative procedures and do not delve into the influence of the used data. To overcome these issues, this paper presents several contributions, framed in the context of explainable Artificial Intelligence (xAI): (a) two filter pruning methods for CNNs, which remove the less significant convolutional kernels; (b) a fine-tuning strategy to recover generalization; (c) a layer pruning approach for U-Net; and (d) an explanation of the relationship between performance and the used data. Filter and feature maps information are used in the pruning process: Principal Component Analysis (PCA) is combined with a next-convolution influence-metric, while the latter and the mean standard deviation are used in an importance score distribution-based method. The developed strategies are generic, and therefore applicable to different models. Experiments demonstrating their effectiveness are conducted over distinct CNNs and datasets, focusing mainly on semantic segmentation (using U-Net, DeepLabv3+, SegNet, and VGG-16 as highly representative models). Pruned U-Net on agricultural benchmarks achieves 98.7% parameters and 97.5% FLOPs drop, with a 0.35% gain in accuracy. DeepLabv3+ and SegNet on CamVid reach 46.5% and 72.4% parameters reduction and a 51.9% and 83.6% FLOPs drop respectively, with almost no decrease in accuracy. VGG-16 on CIFAR-10 obtains up to 86.5% parameter and 82.2% FLOPs decrease with a 0.78% accuracy gain.

摘要

卷积神经网络 (CNN) 的出色表现增加了它们在资源有限的实时系统和设备中的使用。因此,在保持准确性的同时压缩这些网络变得非常必要,从而产生了多种压缩方法。然而,大多数方法都需要密集的迭代过程,并且没有深入研究所使用数据的影响。为了克服这些问题,本文提出了几个贡献,这些贡献框架在可解释人工智能 (xAI) 的背景下:(a) 两种用于 CNN 的滤波器修剪方法,用于去除不太重要的卷积核;(b) 一种用于恢复泛化能力的微调策略;(c) 一种用于 U-Net 的层修剪方法;以及 (d) 解释性能与使用数据之间的关系。在修剪过程中使用滤波器和特征图信息:主成分分析 (PCA) 与下一个卷积影响度量相结合,而后者和均值标准差则用于基于重要性得分分布的方法中。所开发的策略是通用的,因此适用于不同的模型。在不同的 CNN 和数据集上进行了证明其有效性的实验,主要集中在语义分割上(使用 U-Net、DeepLabv3+、SegNet 和 VGG-16 作为高度代表性模型)。在农业基准上修剪后的 U-Net 可以实现 98.7%的参数和 97.5%的 FLOPs 减少,同时精度提高 0.35%。CamVid 上的 DeepLabv3+ 和 SegNet 分别减少了 46.5%和 72.4%的参数和 51.9%和 83.6%的 FLOPs,而精度几乎没有下降。CIFAR-10 上的 VGG-16 可以获得高达 86.5%的参数和 82.2%的 FLOPs 减少,同时精度提高 0.78%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验