Suppr超能文献

FPWT:基于小波变换的 CNN 滤波器剪枝。

FPWT: Filter pruning via wavelet transform for CNNs.

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

China Electronics Standardization Institute, Beijing, 100007, China.

出版信息

Neural Netw. 2024 Nov;179:106577. doi: 10.1016/j.neunet.2024.106577. Epub 2024 Jul 26.

Abstract

The enormous data and computational resources required by Convolutional Neural Networks (CNNs) hinder the practical application on mobile devices. To solve this restrictive problem, filter pruning has become one of the practical approaches. At present, most existing pruning methods are currently developed and practiced with respect to the spatial domain, which ignores the potential interconnections in the model structure and the decentralized distribution of image energy in the spatial domain. The image frequency domain transform method can remove the correlation between image pixels and concentrate the image energy distribution, which results in lossy compression of images. In this study, we find that the frequency domain transform method is also applicable to the feature maps of CNNs. The filter pruning via wavelet transform (WT) is proposed in this paper (FPWT), which combines the frequency domain information of WT with the output feature map to more obviously find the correlation between feature maps and make the energy into a relatively concentrated distribution in the frequency domain. Moreover, the importance score of each feature map is calculated by the cosine similarity and the energy-weighted coefficients of the high and low frequency components, and prune the filter based on its importance score. Experiments on two image classification datasets validate the effectiveness of FPWT. For ResNet-110 on CIFAR-10, FPWT reduces FLOPs and parameters by more than 60.0 % with 0.53 % accuracy improvement. For ResNet-50 on ImageNet, FPWT reduces FLOPs by 53.8 % and removes parameters by 49.7 % with only 0.97 % loss of Top-1 accuracy.

摘要

卷积神经网络 (CNN) 需要巨大的数据和计算资源,这阻碍了它们在移动设备上的实际应用。为了解决这个限制问题,滤波器剪枝已成为一种实用方法。目前,大多数现有的剪枝方法都是在空间域中开发和实践的,这忽略了模型结构中的潜在连接和空间域中图像能量的分散分布。图像频域变换方法可以去除图像像素之间的相关性,并集中图像能量分布,从而导致图像的有损压缩。在本研究中,我们发现频域变换方法也适用于 CNN 的特征图。本文提出了一种基于小波变换(WT)的滤波器剪枝方法(FPWT),该方法结合了 WT 的频域信息和输出特征图,更明显地发现特征图之间的相关性,并使能量在频域中呈现相对集中的分布。此外,通过余弦相似度和高频和低频分量的能量加权系数计算每个特征图的重要性得分,并根据其重要性得分剪枝滤波器。在两个图像分类数据集上的实验验证了 FPWT 的有效性。对于 CIFAR-10 上的 ResNet-110,FPWT 在精度提高 0.53%的情况下,将 FLOPs 和参数减少了 60.0%以上。对于 ImageNet 上的 ResNet-50,FPWT 将 FLOPs 减少了 53.8%,并移除了 49.7%的参数,而 Top-1 精度仅损失了 0.97%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验