Suppr超能文献

一种从心脏骤停后 CT 成像文件中量化缺氧缺血性脑损伤严重程度的简单方法。

Simple approach to quantify hypoxic-ischemic brain injury severity from computed tomography imaging files after cardiac arrest.

机构信息

Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Resuscitation. 2024 Feb;195:110050. doi: 10.1016/j.resuscitation.2023.110050. Epub 2023 Nov 15.

Abstract

BACKGROUND

Grey-white ratio (GWR) can estimate severity of cytotoxic cerebral edema secondary to hypoxic-ischemic brain injury after cardiac arrest and predict progression to death by neurologic criteria (DNC). Current approaches to calculating GWR are not standardized and have variable interrater reliability. We tested if measures of variance of brain density on early computed tomographic (CT) imaging after cardiac arrest could predict DNC.

METHODS

We performed a retrospective cohort study, identifying post-arrest patients treated between 2011 and 2020 at our single center. We extracted demographic data from our registry and Digital Imaging and Communication in Medicine (DICOM) files for each patient's first brain CT. We analyzed slices 15-20 of each DICOM, corresponding to the level of the basal ganglia while accommodating differences in patient anatomy. We extracted pixel arrays and converted the radiodensities to Hounsfield units (HU). To focus on brain tissue densities, we excluded HU > 60 and < 10. We calculated the variance of each patient's HU distribution and the difference between the means of a two-group Gaussian finite mixture model. We compared these novel metrics to existing measures of cerebral edema, then randomly divided our data into 80% training and 20% test sets and used logistic regression to predict DNC.

RESULTS

Of 1,133 included subjects, 457 (40%) were female, mean (standard deviation) age was 58 (16) years, and 115 (10%) progressed to DNC. CTs were obtained a median [interquartile range] of 4.2 [2.8-5.7] hours post-arrest. Our novel measures correlated weakly with GWR. HU variance, but not difference between mixture model means, differed significantly between subjects with and without sulcal or cistern effacement. GWR outperformed our novel measures in predicting progression to DNC with an area under the receiver operating characteristic curve (AUC) of 0.82, compared to HU variance (AUC = 0.73) and the difference between mixture model means (AUC = 0.56).

CONCLUSION

There are differences in the distribution of HU on post-arrest CT in patients with qualitative measures of cerebral edema. Current methods to quantify cerebral edema outperform simple measures of attenuation variance on early brain CT. Further analyses could investigate if these measures of variance, or other distributional characteristics of brain density, have improved predictive performance on brain CTs obtained later in the clinical course or derived from discrete regions of anatomical interest.

摘要

背景

灰白比值(GWR)可用于评估心跳骤停后缺氧缺血性脑损伤引起的细胞毒性脑水肿的严重程度,并通过神经功能标准(DNC)预测向死亡的进展。目前计算 GWR 的方法尚不一致,且组间可靠性存在差异。我们检验了心跳骤停后早期 CT 影像上脑密度变异性测量是否可以预测 DNC。

方法

我们进行了一项回顾性队列研究,纳入了 2011 年至 2020 年在我院接受治疗的心跳骤停后患者。我们从登记处和数字成像与通信(DICOM)文件中提取每位患者的首次脑 CT 数据。我们分析了每个 DICOM 的第 15-20 个切片,对应于基底节的水平,同时考虑了患者解剖结构的差异。我们提取像素阵列并将放射密度转换为亨氏单位(HU)。为了专注于脑组织密度,我们排除了 HU>60 和 HU<10 的值。我们计算了每位患者 HU 分布的方差和两组高斯有限混合模型均值之间的差异。我们将这些新的指标与现有的脑水肿测量指标进行了比较,然后将我们的数据随机分为 80%的训练集和 20%的测试集,并使用逻辑回归来预测 DNC。

结果

在纳入的 1133 例患者中,457 例(40%)为女性,平均(标准差)年龄为 58(16)岁,115 例(10%)进展为 DNC。CT 扫描在心跳骤停后中位数[四分位距]4.2[2.8-5.7]小时进行。我们的新指标与 GWR 相关性较弱。HU 方差,但不是混合模型均值之间的差异,在有或无脑沟或脑池塌陷的患者之间存在显著差异。与 HU 方差(AUC=0.73)和混合模型均值之间的差异(AUC=0.56)相比,GWR 在预测 DNC 进展方面表现优于我们的新指标,其接受者操作特征曲线(ROC)下面积(AUC)为 0.82。

结论

在有定性脑水肿测量的患者中,脑 CT 上的 HU 分布存在差异。目前量化脑水肿的方法优于早期脑 CT 上简单的衰减方差测量。进一步的分析可以研究这些方差测量值,或脑密度的其他分布特征,是否可以提高在临床病程后期获得的脑 CT 或来自解剖学感兴趣的离散区域的脑 CT 的预测性能。

相似文献

本文引用的文献

1
Brain imaging after cardiac arrest.心脏骤停后的脑部影像学检查。
Curr Opin Crit Care. 2023 Jun 1;29(3):192-198. doi: 10.1097/MCC.0000000000001032. Epub 2023 Apr 6.
3
Time to Awakening and Self-Fulfilling Prophecies After Cardiac Arrest.心脏骤停后觉醒时间和自我实现预言。
Crit Care Med. 2023 Apr 1;51(4):503-512. doi: 10.1097/CCM.0000000000005790. Epub 2023 Feb 8.
5
Self-fulfilling prophecies and machine learning in resuscitation science.复苏科学中的自我实现预言和机器学习。
Resuscitation. 2023 Feb;183:109622. doi: 10.1016/j.resuscitation.2022.10.014. Epub 2022 Oct 25.
8
Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis.心脏骤停后脑损伤:病理生理学、治疗和预后。
Intensive Care Med. 2021 Dec;47(12):1393-1414. doi: 10.1007/s00134-021-06548-2. Epub 2021 Oct 27.
9
Brain injury after cardiac arrest.心脏骤停后的脑损伤。
Lancet. 2021 Oct 2;398(10307):1269-1278. doi: 10.1016/S0140-6736(21)00953-3. Epub 2021 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验