Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Resuscitation. 2022 Oct;179:248-255. doi: 10.1016/j.resuscitation.2022.07.029. Epub 2022 Jul 29.
Some patients resuscitated from out-of-hospital cardiac arrest (OHCA) progress to death by neurological criteria (DNC). We hypothesized that initial brain imaging, electroencephalography (EEG), and arrest characteristics predict progression to DNC.
We identified comatose OHCA patients from January 2010 to February 2020 treated at a single quaternary care facility in Western Pennsylvania. We abstracted demographics and arrest characteristics; Pittsburgh Cardiac Arrest Category, initial motor exam and pupillary light reflex; initial brain computed tomography (CT) grey-to-white ratio (GWR), sulcal or basal cistern effacement; initial EEG background and suppression ratio. We used two modeling approaches: fast and frugal tree (FFT) analysis to create an interpretable clinical risk stratification tool and ridge regression for comparison. We used bootstrapping to randomly partition cases into 80% training and 20% test sets and evaluated test set sensitivity and specificity.
We included 1,569 patients, of whom 147 (9%) had diagnosed DNC. Across bootstrap samples, >99% of FFTs included three predictors: sulcal effacement, and in cases without sulcal effacement, the combination of EEG background suppression and GWR ≤ 1.23. This tree had mean sensitivity and specificity of 87% and 81%. Ridge regression with all available predictors had mean sensitivity 91 % and mean specificity 83%. Subjects falsely predicted as likely to progress to DNC generally died of rearrest or withdrawal of life sustaining therapies due to poor neurological prognosis. Two of these cases awakened from coma during the index hospitalization.
Sulcal effacement on presenting brain CT or EEG suppression with GWR ≤ 1.23 predict progression to DNC after OHCA.
一些从院外心脏骤停(OHCA)中复苏的患者会因神经标准而死亡(DNC)。我们假设初始脑成像、脑电图(EEG)和骤停特征可预测进展为 DNC。
我们从 2010 年 1 月至 2020 年 2 月在宾夕法尼亚州西部的一家四等医疗保健机构中确定了昏迷的 OHCA 患者。我们提取了人口统计学和骤停特征;匹兹堡心脏骤停分类、初始运动检查和瞳孔光反射;初始脑计算机断层扫描(CT)灰质与白质比率(GWR)、脑沟或基底池变平;初始 EEG 背景和抑制比。我们使用了两种建模方法:快速而节俭树(FFT)分析来创建可解释的临床风险分层工具和岭回归进行比较。我们使用引导法将病例随机分为 80%的训练集和 20%的测试集,并评估了测试集的敏感性和特异性。
我们纳入了 1569 例患者,其中 147 例(9%)被诊断为 DNC。在整个引导样本中,超过 99%的 FFTs 包含三个预测因素:脑沟变平,在没有脑沟变平的情况下,EEG 背景抑制和 GWR≤1.23 的组合。该树的平均敏感性和特异性分别为 87%和 81%。具有所有可用预测因素的岭回归的平均敏感性为 91%,平均特异性为 83%。被错误预测为可能进展为 DNC 的患者通常因预后不良而死于再次骤停或停止维持生命的治疗。其中两例在住院期间从昏迷中苏醒。
初始脑 CT 上的脑沟变平或 EEG 抑制与 GWR≤1.23 可预测 OHCA 后进展为 DNC。